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ABSTRACT 

 
This investigation studies how critical is the effect of considering uncertainty to a dynamic model 
because	  of	  Jensen’s	  Inequality.  This is done using as an example the supply chain of a refinery, 
which illustrates that the difference between probable and expected results can be significant, 
arguing that the distributions and probabilities can be dramatically different from the expected-
planned value. Moreover, this research discusses that, from the perspective of the dynamics of the 
system, the mode of behavior can vary considerably as well, leading managers to dissimilar 
situations and contexts that will inevitably produce different decisions or strategies. 
 
Supply chain management is a critical aspect of any business. The energy industry is a particularly 
relevant example of a global supply chain, representing a crucial challenge the management of 
complexity and relevance for the overall performance of the business.  
 
The complexity of managing the supply chain of an energy company is produced by the physical 
size, diversity of operations and products and dynamics of the system, among many others causes. 
On top of the intrinsic complexity of the business itself, the manager of a supply chain should also 
consider the complexity of the models and methodologies used to make decisions about it. These 
models and methodologies are diverse and they serve different purposes under certain 
assumptions.  
 
This study also discusses the complexity faced by supply chain managers, presenting a compilation 
of bibliographic research about different considerations and approaches. Managers often employ 
models and analytics to simplify the complexity and produce intuition by different means in order 
to form their decisions and strategies. 
 
The analysis of the effects of uncertainty on the results and behavior of a dynamic simulation model 
is done by stochastically simulating an already-developed -plug & play- dynamic model of a 
refinery. This approach permits the exploration of different configurations, considering different 
definitions of uncertainty, analyzing and comparing their particular results.  
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INTRODUCTION 

 

Managers and decision makers often recur to models and analytics as tools to understand the real 

systems in which they work and define optimal decisions and goals. Very commonly, these models 

are complex in both combinatorial and dynamic ways, overwhelming the decision makers and 

making almost impossible to understand intuitively the behavior of the system and to verify that 

the results are actually the desired solution.  

 

In most cases, models and simulations cannot be verified to prove accuracy. This is the main reason 

why the mathematical and physical laws have to be considered from the very beginning to 

construct (or at least try to) good models. One of the mathematical concepts that has to be 

considered	  by	  managers	  and	  decision	  makers	  is	  the	  Jensen’s	  Inequality, which states that the 

“average	  of	  all	  the	  possible	  outcomes	  associated	  with	  uncertain	  parameters,	  generally	  does	  not	  

equal	  the	  value	  obtained	  from	  using	  the	  average	  value	  of	  the	  parameters”	  (de	  Neufville,	  2012). 

 

This challenge evokes the famous computer science problem called P versus NP. This challenge 

states	  that	  “for	  all	  problems	  for	  which	  an	  algorithm	  can	  verify	  a	  given	  solution	  quickly	  (that	  is,	  in	  

polynomial	  time),	  an	  algorithm	  can	  also	  find	  that	  solution	  quickly” (Aaronson, 2013). In practice, 

this has a profound implication for a decision maker, because it means that the models used to 

estimate results are, in practice, the only available tool to understand reality, but they are not 

verifiable (at least beforehand).  

 

If P = NP, then the world would be a profoundly different place than we usually assume it to be. 

There would be no special value in 'creative leaps,' no fundamental gap between solving a 

problem	  and	  recognizing	  the	  solution	  once	  it’s	  found.	  Everyone who could appreciate a 

symphony would be Mozart; everyone who could follow a step-by-step argument would be 

Gauss... — Scott Aaronson, MIT 

 

Systems Dynamics, founded at MIT Sloan in 1956 by Professor Jay W. Forrester, is a discipline that 

combines theory, methods, and philosophy to analyze the behavior of systems.	  “This	  is	  not	  only 

applied to management, but also in such other fields as environmental change, politics, economic 

behavior,	  medicine,	  and	  engineering”	  (MIT Sloan School of Management, 2013). 
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Dynamic simulations are highly non-linear (Sterman, 2000) and therefore the effects	  of	  Jensen’s	  

Inequality must be considered as a cause of producing the wrong results. This research evaluates 

the expected value of the result of a dynamic simulation, but also the different modes of behavior 

produced by those dynamic simulations.  

 

The different effects of uncertainty can be relevant for the decision makers since they could 

certainly produce different behaviors due to different pressures and contextual factors. These 

differences could represent dissimilar strategies, decisions, risk perception and other factors that 

are certainly significant from the point of view of any manager.  

 

The effects	  of	  Jensen’s	  inequality	  on	  the	  expected	  value	  of	  a	  model	  have	  been	  studied	  in	  the	  past.	  

The novelty of this research lays in the focus	  of	  the	  effects	  of	  Jensen’s	  Inequality	  on	  the	  mode	  of	  

behavior of a dynamic system. 
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SUMMARY 

 

The exercise of exploring different configurations of uncertainty over the Integrated Refinery In-

Silico (IRIS) plug & Play model produced the following observations:  

 

 Considering uncertainty is necessary to obtain the correct result	  due	  to	  Jensen’s	  Inequality, 

however, considering the fact that the dynamic complexity of a system like IRIS makes 

impossible to intuitively understand the behaviors of the model, it is also recommendable to 

explore the mode of behaviors and the dominance of the different feedback loop without 

uncertainty to simplify the analysis. 

 

 IRIS served as a useful and didactic plug & play model allowing different configurations and 

simulations with and without stochastic uncertainty. This model also exemplifies that even 

simple structures are impacted severely by dynamic complexity. One example was observed 

by analyzing the behavior of the total profits over a period of 240 days without uncertainty 

(Appendix 9: The dynamics of not achieving demand). 

 

 The configuration of uncertainty of the original setting specifies a random number seed, 

which determines the sequence of random numbers generated. This means that if the 

simulation is repeated using the same seeds, IRIS should get exactly the same sequence of 

random numbers and thus the same results. This representation of variability originally 

used by IRIS is useful and certainly more valuable than not considering uncertainty at all, 

but	  it	  doesn’t	  consider	  the	  effects	  of	  Jensen’s	  Inequality	  on	  the	  result	  of	  the	  simulation.	  	   

 

 The comparison between the original case and the configuration without uncertainty (Case 

0), from the perspective of the total profits of the system for the first 120 days of simulation 

(Figure 10) suggests different mode of behaviors. This difference could be material from the 

point of view of the manager since the decisions and strategies derived from the results and 

trends will be significantly influenced. 
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 Even a very simple configuration of stochastic uncertainty, like the one proposed in Case 2, 

produced the following effects: 

o An expensive computation, that even with advanced implementations like parallel 

implementation, will still require time and memory to be computed. 

o  There is significant evidence that the hypothesis that the value obtained from the 

original simulation (Base Case) and the expected value of the stochastic simulation 

are the same has to be rejected. 

o The range of probable results goes from almost zero profit after 120 days to almost 

$120 million, which is approximately twice the value estimated without 

stochasticity (Base Case). These differences are material from the point of view of 

the risk evaluation of the project.  

o It is suggested by the results of the stochastic simulation over the time horizon (120 

days for Case 2) that the	  effect	  of	  the	  Jensen’s	  Inequality	  over	  the	  variation	  of	  the	  

result of the simulation grows over time. This effect seems to be a propagation of the 

effect of the Flaw of Averages over each time step of the dynamic simulation (Figure 

20) 

 

 Dynamic models are composed by variables connected in a particular structural 

relationship. These structures produce behaviors (Sterman, 2000) and therefore the effects 

of uncertainty on different parts of the structures are interesting for the decision maker 

because they will produce different behaviors. The comparison of Case 1a and Case 1b 

illustrated the different impacts that uncertainty can have in different modules of IRIS. In 

the first case (1a) uncertainty just produced an impact on the final result, but not in the 

mode of behavior. Case 1b, in contrast, produced both an impact on the final result and the 

mode of behavior of the system. 

 

 The comparison of two different applications of uncertainty (case 1a and Case 1b) also 

showed that the expected value and the risk of the system can change in different 

directions. In this particular example, Case 1a produced a smaller expected profit than Case 

1b, but also a smaller risk, represented by the standard deviation (Figure 15). The 

implication of this observation for the decision maker is that the decision of defining 

uncertainty in the modeling and analytic process is critical, since it will produce different 

effects depending where and how it is defined. The challenge from an architectural point of 
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view is that it is not possible to define, at least beforehand, which one is better that the 

other one, since it will depend on the particular use required for the application.  

 

 Different configurations of uncertainty could also have different impacts on the behavior of 

the system. The reason for this is that the dominance of each of the feedback loops of the 

system will depend on many different aspects, but mainly the values assigned for each 

variable. This can be added to the fact that the delays will behave in a different way 

depending on the inflow and outflow values of the stock variables representing the delay in 

the dynamic system. In IRIS, this is exemplified by the fact that the original configuration is 

not producing as much as demanded, which will be important for the behavior once the 

stocks are depleted (Appendix 9: The dynamics of not achieving demand). 

 
 A sensitivity analysis suggested two different aspects: 

o The computation of the model can become a critical barrier in practice for the 

decision maker. Even the simple case with a parallel implementation of iterating the 

model for each variable required many hours that most of the time will not be 

available. 

o It is possible to identify the variables that are more relevant in impacting the result 

and behavior of the model when stochastically simulated (Figure 21). This 

information is useful for reducing the computational effort required, but also to 

define where to focus efforts. 

 

In general, it is clear from the bibliographic research that there is a significant academic and 

industrial consensus on how important and challenging it is to manage supply chains. The detailed 

and dynamic complexity are both present in any supply chain system, and they are especially 

present in an energy company due to their global reach and diversity and scale of products.  

 

The methods for modelling and analyzing a supply chain system are diverse and complex, creating a 

challenge just from the perspective of the techniques. The confusion between improvement and 

optimization can reduce the effectiveness of the efforts taken by the decision maker. Complexity is 

also expensive to compute and it could become a material barrier to overcome. Yet, it is important 

to keep in mind that even sophisticated and well developed models are limited. 
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Model relaxation could be a useful strategy if the appropriate non-relevant aspects are ignored. 

However, it is very important to consider that model scope is not just about relaxation but also 

about adding complexity when required. This is an architectural decision of any supply chain 

management endeavor. 

 

Because of the mentioned reasons, dynamic simulations are highly non-linear (Sterman, 2000) and 

therefore the effects	  of	  Jensen’s	  Inequality	  must be considered as a cause of producing the wrong 

results. IRIS served as a practical and flexible platform for testing the different effects. It is expected 

to find similar, and even bigger effects on more complex and realistic models. For this reason it is 

encouraged	  to	  research	  further	  the	  effects	  of	  Jensen’s	  Inequality	  with	  more	  models	  and	  more	  

specific applications. 
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RESEARCH OBJECTIVES 

 

Dynamic systems are often simulated using deterministic inputs. These kinds of simulations are 

highly non-linear (Sterman, 2000) and therefore the effects of Jensen’s	  Inequality,	  must	  be	  

considered as a cause of producing the wrong results.  

 

Main hypothesis for the thesis research:  

 

Not considering uncertainty in the inputs of a dynamic simulation produces the wrong results and a 

different mode of behavior. 

 

Research questions: 

 

 Does Jensen’s	  inequality	  alter the expected value of the result of a dynamic simulation? 

 Does it also produce different modes of behavior of a dynamic simulation? 

 How can these different results and modes of behavior be relevant for the decision makers? 
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BIBLIOGRAPHIC RESEARCH 

THE IMPORTANCE OF OPTIMIZING THE VALUE CHAIN 

 

The supply chain can be a significant aspect of a business, impacting how the value is transformed 

by a particular company.  This chain of value involves the handling of raw materials, parts, 

processes and others that can together represent, conservatively estimated, up to 70% of the total 

cost of a product (Pal, et al., 2011). For this reason, supply chain management has been an 

attractive field for intense academic and industrial research. Several papers have approached this 

topic considering different themes, most commonly: general trends and issues in supply chain, 

dynamic modeling approaches, supply chain performance management issues, process maturity-

supply chain performance relation, KPI prioritization and dependence, and human and 

organizational sides of supply chain performance management (Akyuz & Erkan, 2010). Actually, 

results show that if a company searches for supply chain cost reduction via coordinating their 

actions, superior performance is achievable (Disney, et al., 2006). 

 

Supply Chain Management has become a field in itself, studying from the impact of managing the 

supply chain on the overall performance of the business and reducing the risks, to the efficiency of a 

supply chain management including	  “dimensions	  connected	  with	  real	  goods	  and	  services	  flows” 

(Lichocik & Sadowski, 2013). Since supply chains are commonly intricate international networks, 

even geopolitical considerations can have significant effects (Spillan, et al., 2013).  

 

The considerations of planning, like “mindful planning processes help an organization avoid 

disruptions	  and	  be	  more	  resilient”	  (Ojha, et al., 2013) and the approach to treat the internal 

relationship to define value and performance are also included in the management of a supply 

chain. Some researchers argue that	  “it	  makes	  sense	  for	  managers	  to	  consider	  categorizing	  supply	  

chain relationships similar to the way they categorize their end-user	  relationships”	  (Tokman, et al., 

2013) which would eventually have a significant impact on the business. 

 

It	  is	  common	  to	  see	  that	  practical	  results	  and	  real	  systems	  don’t	  necessary	  show	  the	  level	  of	  

improvements that are theoretically available, even with intense academic and industrial research 

on methodologies and technologies to optimize or improve value chains, these new ideas and 
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technologies haven’t	  necessary	  led	  to	  improved	  performance	  “because managers lack a framework 

for	  deciding	  which	  ones	  are	  best	  for	  their	  particular	  company’s	  situation…“	  (Fisher, 1997). 

 

YES, IT IS COMPLEX, AND NOT JUST BECAUSE OF THE DETAILS 

 

Management of a supply chains is a complex task for several reasons: the physical size of the supply 

network and its inherent uncertainties (Papageorgiou, 2009) are commonly cited causes of 

complexity, still,  a supply chain is a system within a bigger system, and therefore, it should 

recognize financial, social and environmental elements, in order to include sustainable 

development considerations for improving social and environmental impacts of production 

systems (Hall, et al., 2012). Similarly, supply chains, and especially in big industries like the energy 

industry, are influenced by regulatory development (Weijermars, 2012) that many times it is out of 

the direct control of the companies. Moreover,	  “in	  industry	  the	  focus	  has	  shifted	  from	  a	  pure	  

logistics-oriented view towards the integration of pricing and revenue issues into cross-functional 

value chain	  planning	  models” (Kannegiesser & Gunther, 2011). 

 

Furthermore, supply chains are not stationary systems from the point of view of their structure and 

behavior; they evolve according to the different strategies and plans of a particular company. An 

example of this evolving nature is the case of the clean energy transition experienced by the energy 

industry, where the effects of the commodity markets contract and spot demand can be 

distinguished. Contract demand is based on agreements between the company and customers that 

vary on time, with sales quantities and prices being fixed only for limited and defined periods 

(Kannegiesser & Gunther, 2011). In general, most of the current supply chains “involve numerous, 

heterogeneous, geographically distributed entities with varying dynamics, uncertainties, and 

complexity.” (Suresh, et al., 2008). 

 

Measuring the complexity of a supply chain helps to manage it. This is important when considering 

that globalization and its effects are also a relevant factor on the complexity of supply chains, 

especially on logistics activities (Isik, 2010). Some studies are also focused on understanding the 

level of integration and information sharing between partners and competitors. In this regard, 

“evidence	  shows	  that	  more	  extensive	  process	  integration	  and	  information	  sharing	  have	  favorable	  

financial	  performance	  implications	  for	  supply	  chain	  partners”	  (Schloetzer, 2012). 
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Just the understanding, abstraction or modeling of a supply chain is not enough to successfully 

manage it. It is also necessary to realize that supply chain management goes together with the 

“software systems for supporting decisions at the strategic, tactical, and	  operational	  planning	  level” 

(Kannegiesser & Gunther, 2011). “Analysis and optimization of the SC requires consideration of 

numerous entities, each with its own dynamics and stochastic, participating in events occurring on 

various time lines, which make them significantly complex” (Suresh, et al., 2008) and can produce 

not just incredibly expensive computations but unpractical ones, since they would take years to run 

even with modern super computers.  

 

Moreover, the complexity of a supply chain is not just significant in terms of the number of its 

components and interactions, which is known as combinatorial complexity or detailed complexity, 

it is also material because it is dynamic, and therefore the effects of its delays, for example, can 

produce missing intuition of even very simple problems in terms of details and combinatory 

(Sterman, 2000). When combining this challenge with optimization, on-line model adaptation has 

been proposed as required for appropriate prediction and re-optimization. “In most dynamic real-

time optimization schemes, the available measurements are used to update the plant model, with 

uncertainty being lumped into selected uncertain plant parameters” (Bonvin & Srinivasan, 2013). 

This can be also incorporated in the modeling through decision rules and flexibility (de Neufville & 

Scholtes, 2011).   

 

Real world systems are dynamic with several feedback loops and reactions from people operating 

them. These loops present many delays and nonlinearities that can produce a dynamic complexity 

even in small simple systems due to many reasons like self-organizing characteristics, adaptive, 

tightly coupled, among others reasons (Sterman, 2000). 

 

YES, IT IS COMPLEX, ESPECIALLY FOR THE ENERGY INDUSTRY 

 

Supply chains are important and complex in general, but in the energy industry this is more than 

ever true:  
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“The	  energy	  value	  chain	  is	  one	  that	  is	  intrinsic	  to	  the	  existence	  of	  the	  world	  as	  we	  know	  it	  

today. It is an industry that is more than 150 years old and is one of the most complexes in 

the world today. By the very nature of its product, this business is subject to risks such as 

geopolitical risk, business risk, financial risk, credit risk, market risk, currency risk – the list 

continues.”	  (Kavi, 2009) 

 

A global energy firm such as Chevron spans wide segments of the value chain in which it operates, 

from	  oil	  exploration	  to	  service	  stations,	  but	  it	  does	  not	  span	  the	  entire	  chain.	  Approximately	  “fifty	  

percent of the crude oil it refines comes from other producers, and more than one third of the oil it 

refines	  is	  sold	  through	  other	  retail	  outlets”	  (Shank & Govindarajan, 1992). A global energy company 

is	  also	  detached	  from	  the	  consumption	  of	  its	  final	  product	  since	  it	  is,	  for	  example,	  “not	  in	  the	  auto	  

business at all, the major user of gasoline. More narrowly, a firm such as Maxus Energy is only in the 

oil exploration and production business. The Limited Stores are big downstream in retail outlets 

but	  own	  no	  manufacturing	  facilities.”	  (Shank & Govindarajan, 1992) 

 

An energy supply chain as a whole is an incredibly huge and complex system. When zooming into a 

particular part of that system, even the small parts are complex. The offshore supply chain, for 

example, is incredibly complex; the	  “supply-chain related costs for an integrated oil company in the 

Gulf of Mexico can be $200 to $400 million annually. Even a modest reduction in these costs 

through optimization can produce substantial savings”	  (West & Lafferty, 2008). Understanding the 

systemic factors and conditions of these specifics parts of the business is a challenge in itself.  The 

upstream oil & gas business is increasingly impacted by federal legislation, while midstream and 

downstream energy segments are more related to state regulators (Weijermars, 2010). Regulation, 

in general, has a significant impact on the performance of the mid and downstream oil and gas 

industries (Weijermars, 2012). 

 

The complexities previously discussed are not just difficult to manage, but moreover to understand 

in terms of the causes and effects over time. Many studies have explored different aspects of these 

complexities in the oil and gas industry, for example, the link between industrial clusters and 

competitiveness couldn’t be proven empirically, however, it has been suggested that clusters 

enhance and enable higher levels of agile practices (Yusuf, et al., 2013). These complexities are also 

evolving overtime due to changes in the structures of the companies themselves making even more 

difficult	  to	  understand	  what	  is	  going	  on.	  Recent	  evidence	  of	  this	  observable	  fact	  are	  “the mergers 
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between BP-Amoco (1998), Exxon and Mobil (1998), Dow-Union Carbide (1999), and Chevron and 

Texaco (2000)” (Ross & Droge, 2002) 

 

The intricate distinction of what is internal and external in an energy supply chain is as well a big 

source of complexity. “A typical refinery [supply chain] comprises oil suppliers, 3rd party logistics 

providers, shippers, jetty operators, and	  customers” (Suresh, et al., 2008), in which the refineries 

and other entities or subsystems can be owned or not by the same company that owns the supply 

chain. Each of the subsystems is also dependent of material complexity that arises from many 

aspects	  like	  “seasonal requirements, market competition, and geographical demand patterns” 

(Suresh, et al., 2008). The number of these subsystems is, in real energy supply chains, colossal, but 

finite, forming	  an	  intricate	  “process	  network	  by	  a	  set	  of	  processes	  that	  are interconnected in a finite 

number	  of	  ways” (Bok, et al., 2000). This, in a way, motivates the managers to describe in their 

models, those details of large, but limited aspects. 

 

ALTERNATIVES METHODS FOR MODELING AND OPTIMIZATION 

 

Selecting the appropriate tools or methodologies to understand and analyze a supply chain is a 

challenging problem by itself. Several researches have been conducted to tackle this problem, 

studying it from almost every possible perspective; modeling, analytics, architecture, design, 

systems aspects, human contributions, dynamic behavior, etc.  

 

Some papers have considered the combined benefits of cost, time, and satisfaction level for 

customized services to derive a scheduling strategy for a supply chain formulating an approach of a 

multi-tier model and multiple objectives (Tang, et al., 2013). The effective control over each 

element of the supply chain has also been considered important: Inventories, facilities and 

transportation can impact significantly the efficiency of a supply chain, and the optimization of the 

system can be analyzed using many familiar optimization algorithms such as particle swarm 

optimization and simulated annealing optimization techniques, with performance and results from 

some of them more efficient than others. (Ahamed, et al., 2013). 

 

Just the problem of defining the optimal design or configuration of a supply chain is not a discipline 

itself, but many bodies of knowledge combined together. From the mathematical modeling point of 
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view, hundreds of alternatives of numeric and heuristic tools are available to use with different 

advantages and limitations (Papalambros & Wilde, 2000). If considering a multi-criterion 

optimization, different aspects, like maximization of the net present value and minimization of the 

expected lead time, can be modeled producing a Pareto-optimal curve “that reveals how the optimal 

net present value…	  change with different values	  of	  the	  expected	  lead	  time” (You & Grossmann, 

2008). Other specific methodologies, like the Lagrangian-relaxation-based algorithm has been 

successfully applied in the literature with particular results and difficulties (Ozsen, et al., 2009). 

Figure 1 illustrates the different levels of optimization decisions that a manager optimizing a 

business system has to follow. 

 

 
FIGURE 1: OPTIMIZATION LEVELS 

 

The list is endless when talking about methodologies and approaches to optimize the supply chain; 

however, this is not the only aspect that is relevant in the analysis. The robustness of the supply 

chain under changing conditions is also a topic of study; in this regard, tools like multiclass 

queueing networks are an essential tool for modeling and analyzing complex supply chains stability 

subject to uncertainty (Schönlein, et al., 2013). On the other hand, and focusing on getting better 

results on expected value rather than having a system working under any condition, flexibility in 

the engineering design has been proposed instead of robustness to be a more effective strategy to 

tackle uncertainty (de Neufville & Scholtes, 2011). 

 

A common example in the literature and the industry are the linear optimization models that have 

been presented to support tactical value chain planning decisions on sales, distribution, production, 

and procurement, specifically suited for precise applications in value chain network for chemical 

commodities (Kannegiesser & Gunther, 2011). More detailed examples can be found, like the multi-

echelon supply chain networks of a multi-national corporation “combining both the strategic 

Optimization of a business system

Selection of the optimization methodology

Optimization of the implementation of the 
selected methodology
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(facility planning) and tactical asset management (production–allocation–distribution) problems 

into an integrated asset management, capital budgeting, and supply chain redesign model as 

opposed to solving these problems individually” (Naraharisetti, et al., 2008). 

 

“To	  optimize,	  a	  realistic	  embedded	  systems	  design	  requires	  efficient	  algorithms	  and	  tools	  that	  can	  

handle	  multiple	  objectives	  simultaneously.” (Qiu & Li, 2011). This is true for almost every real 

problem. Multiple objectives produce a different approach to optimization, which can go from 

maximizing-minimizing perspective to a trade-off proposition (de Weck, 2012). Many algorithms 

exist to deal with this challenge	  that	  can	  achieve	  general	  and	  specific	  purposes,	  like	  for	  example,	  “to	  

go before reaching a goal of an algorithm capable of dealing with multi-parametric and multi-

component (multiple locations) linear programs regardless of the location of the parameters.” 

(Khalilpour & Karimi, 2014) 

 

To make this challenge even more entertaining, and considering that the complexity of a supply 

chain is not just detail complexity but dynamic, the structure-behavior relationship of the supply 

chain can be studied from a systems dynamic point of view (Sterman, 2000). This approach could 

“allows the user to simulate and analyze different policies, configurations, uncertainties, etc.” 

(Suresh, et al., 2008) in a way that is intuitive, even when the dynamic complexity, mentioned 

before, limits the understanding of the behavior of the system significantly. 

 

OPTIMIZING DESIGN VERSUS IMPROVING PERFORMANCE OF CURRENT DESIGN 

 

Managing a supply chain to obtain better results can be confusing for the decision maker even from 

the point of view of the objective. It is important to differentiate the strategies to improve a supply 

chain performance than the ones to optimize the design or configuration. The differences are 

significant and reside mainly in the set of tools and methodologies to use, but also in the limitations 

of each approach. Some	  researchers	  report	  that	  they	  “have	  not	  observed	  any	  significant	  direct	  

relationship between supply chain management programs and practices and total quality 

management practices. SCM program has been observed to be directly linked with flexible systems 

practices	  and	  not	  by	  any	  other	  variable.”	  (Siddiqui, et al., 2012). This flexibility focus is also another 

layer of analysis for the problem, since flexibility represents an alternative for the decision maker, 

incrementing the design space of available options (de Neufville & Scholtes, 2011). 
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The flexibility analysis is important since one of the considerations to keep in mind when defining 

the objective is to identify the ongoing changes that the supply chain is having during the time of 

improvement or optimization. These changes can be significant in a supply chain of a chemical 

multinational	  company,	  like	  most	  of	  the	  energy	  companies.	  “A facility once built or an existing 

facility may undergo	  multiple	  capacity	  expansions…	  Further, disinvestment can also be done in 

multiples of the same discrete capacity.” (Naraharisetti & Karimi, 2010). Research has concluded 

that	  “mastering	  change	  and	  uncertainty	  correlates	  highest	  with	  turnover” (Yusuf, et al., 2012). 

 

This problem of optimizing design versus improving performance opens the door to a whole world 

of improvement methodologies. References from traditional tools like Lean Manufacturing and Six 

Sigma can be used to guide this analysis. A pertinent factor to consider in this analysis is the 

maturity level of the system.  A simple example is to understand that it would be unfair to say that a 

supply chain design or configuration needs to be optimized before the implementation of its design 

is completed. This is especially true in big and complex supply chains, where the implementation of 

the system could take years. It is important to differentiate between necessary corrective actions 

(Ulrich & Eppinger, 2012) and design limitations. Changing (or optimizing) the design or 

configuration when it is not working as supposed could lead to the wrong strategy, in other words: 

it is not necessary to fix what is not broken.   

 

Another relevant consideration to have is the fact that a supply chain is a system composed, like 

most of the systems, by parts with conflicting interests, which can be, at least in theory, be solved by 

maximizing “the summed enterprise profits of the entire supply chain subject to various network 

constraints”	  (Gjerdrum, et al., 2001). These conflicts will produce a trade-off problem from the 

optimization point of view (de Weck, 2012), but also from the perspective of the human 

interactions that will require negotiations and leadership skills that are not related at all with the 

mathematical procedure (Katz, 2004). 

 

In between the definitions of optimization and improvement we can find real time optimization, 

which is a class of methods that use measurements to bypass the effect of uncertainty on optimal 

performance and improve in real time the configuration of the system. Several real-time 

optimization schemes have been studied that “implement optimality not through numerical 

optimization but rather via the control of appropriate variables” (Francois, et al., 2012). Advanced 
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real-time optimization, control, and estimation strategies are dependent on time-dependent data 

obtained	  at	  predefined	  sampling	  times	  (e.g.,	  sensor	  measurements	  and	  model	  states).” (Zavala & 

Anitescu, 2010) 

 

COMPUTATIONAL CHALLENGE 

 

As if the challenge of selecting an appropriate methodology to analyze the improvement or 

optimization of a supply chain or getting intuition on such a complex system was not enough, the 

manager of a supply chain must also compute the model, facing another layer of difficulties and 

limitations for the project. The reality of energy industry is that the decision problems represented 

in a mathematical form often result in a very large scale optimization problems, with different types 

of variables, functions, etc. (Applequist, et al., 2000). 

 

Computation time is relevant for big and complex systems with several elements and interactions, 

but is even more relevant when adding stochastic simulations to those models (de Neufville & 

Scholtes, 2011). Efforts to improve computational	  performance	  have	  been	  conducted.	  “Algorithms 

[have been] developed for reducing the dimension of large scale uncertain	  systems” (Russell & 

Braatz, 1998). Even optimization of the algorithm to optimize the supply chain should be 

considered, using methodologies that “permits a reduction in the required computation time as a 

result of the optimal nesting of [for example] the iteration loops” (Montagna & Iribarren, 1988), 

however, for real complex systems, even this will produce heavy systems to compute.  

 

Computation of an optimization can be a huge problem, since the process of finding the solution 

(solving	  the	  optimization)	  “may	  result	  in	  a	  very	  complicated	  model	  which	  is	  computationally	  

intractable	  even	  for	  small	  scale	  instance”	  (You & Grossmann, 2008). In the energy industry this is 

especially true, because we are facing a design problem for a complicated process supply chain 

network with multi-sourcing (Ozsen, et al., 2009). 

 

Not just the scale of the optimization problem is a challenge from the computational point of view. 

The challenge for the decision maker also considers the fact that an energy supply chain is, most 

probably, a multi-objective optimization, and therefore compromise among the different goals 

should be considered (de Weck, 2012), for example, by Pareto optimality and using a subjective 
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weighted-sum method. “Many alternatives are available to compare objectives, like scaling each of 

the objectives directly onto the range [0, 1], or to adopt the fuzzy set concept depending on the 

particularities of each analysis” (Chen, et al., 2003). Pareto optimality has a limitation related to the 

number of dimensions (or objectives) analyzed (Papalambros & Wilde, 2000). 

 

In order to overcome the challenge derived by the computational cost of optimization, many 

methodologies have been proposed. One efficient strategy is to separate the problem in a two steps 

approaching the solution with a screening model first (de Neufville & Scholtes, 2011),	  or	  “bi-level 

decomposition algorithm that involves a relaxed problem and a sub problem for the original supply 

chain	  problem.” (Bok, et al., 2000). Meta-models, in general, are “commonly used as fast surrogates 

for the objective function to facilitate the optimization of simulation models… Empirical results 

indicate that [this approach] is effective in obtaining optimal solutions” (Quan, et al., 2013). 

 

In order to reduce, or simplify the modeling, reduction strategies commonly takes two general 

approaches: model order reduction and data-driven model reduction (Biegler, et al., 2014). 

Regarding this approach, it is critical to keep in mind that “It	  helps	  you	  to	  ignore	  details,	  but	  you	  

have	  to	  be	  careful	  to	  ignore	  details	  that	  are	  actually	  important” (Devadas, 2013). In order to 

develop a reduced model it is important to clarify several issues, like the properties needed for the 

reduced model-based optimization framework to converge to the optimum of the original system 

models, or the properties that govern the (re)construction of reduced models in order to balance 

model accuracy with computational cost during the optimization, or if the reduced model-based 

optimization can be performed efficiently without frequent recourse to the original models 

(Biegler, et al., 2014). 

 

Since parameters can never be estimated perfectly and the	  decision	  maker	  “must always decide 

which	  to	  focus	  on	  and	  when	  to	  stop”	  studying	  it	  (Sterman, 2000), and the fact that most of energy 

supply chains exhibit decentralized characteristics, the manager of a complex supply chain could 

consider relaxation algorithms for optimal decision-making problems for such decentralized 

systems. “Such problems consist of a collection of interacting sub-systems, each one described by 

local properties and dynamics, joined together by the need to accomplish a common task which 

achieves	  overall	  optimal	  performance”	  (Androulakis & Reklaitis, 1999). 

 



28 
 

Techniques to reduce the size of the evaluated data by the algorithm have been developed. In 

dynamic optimization problems, for example, algorithms exist to refine the control grid iteratively 

“using a wavelet analysis of the previously obtained optimal solution. Additional grid points are 

only inserted where required and redundant grid points are eliminated” (Assassa & Marquardt, 

2014). It	  has	  also	  been	  demonstrated	  that	  “incorporating measured variables that do not provide 

any additional information about faults degrades monitoring performance.” (Ghosh, et al., 2014). In 

practice, “insisting on obtaining a high degree of accuracy can translate	  into	  long	  sampling	  times…	  

limiting the application scope of real-time	  NLO	  to	  systems	  with	  slow	  dynamics.” (Zavala & Anitescu, 

2010). 

 

The modeling strategy of simplifying the model is described by many authors using different 

terminology: meta-models (Quan, et al., 2013), screening models, (de Neufville & Scholtes, 2011), 

relaxation (Wikipedia, 2013), and many others. This bi-level decomposition, together with the 

Benders decomposition to solve very large linear programming problems that have a special block 

structure (Wikipedia, 2013)“are two major approaches that have been applied to multi-period 

optimization problems…	  bi-level decomposition is different from the Benders decomposition in 

that the master problem is given by a special purpose aggregation of the original problem which 

generally	  tends	  to	  predict	  tighter	  upper	  bounds.” (Bok, et al., 2000) 

LIMITATIONS OF MODELING AND OPTIMIZATION 

 

“Persons	  pretending	  to	  forecast	  the	  future	  shall	  be	  considered	  disorderly	  under	  subdivision	  

3,	  section	  901	  of	  the	  criminal	  code	  and	  liable	  to	  a	  fine	  of	  $250	  and/or	  six	  months	  in	  prison.” 

Section 889, New York State Code of Criminal Procedure (Webster & de Neufville, 2012) 

 

The modeler and decision maker of a supply chain optimization should be aware of several 

limitations of the methodologies. Most of them come from the fact that the methods are constructed 

following some assumptions and those assumptions should hold during the analysis. Even well 

defined projects by very competent professionals have fallen in common mistakes. Studies, like for 

example, the analysis of the mixed-integer linear program proposed by Kannan et al. (Kannan, et al., 

2009) that found inconsistencies in the model (Subramanian, et al., 2012) are common in the 

academic world. Just to mention some of the limitations and mistakes commonly cited: 
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 Integration of the information across the different subsystems of a supply chain is not 

always available for the analysis, for example, the integration of strategic management 

theory and IT knowledge could provide valuable information in these complex and 

complementary value chains (Drnevich & Croson, 2013), but is not commonly available for 

most of the companies. Currently, multi-scale process optimization still needs effective 

problem formulation and modeling environments,	  since	  “they cannot include detailed 

interactions with material design, complex fluid flow and transport effects with multiphase 

interactions.” (Biegler, et al., 2014) 

 

 Dynamic effects, like the bullwhip effect, are often ignored by the analysis. Some 

researchers have study quantitatively this effect on a discrete-event simulation model of a 

supply chain, (Bottani & Montanari, 2010). The bullwhip effect (or whiplash effect) is an 

observed phenomenon in forecast-driven distribution channels that “refers to a trend of 

larger and larger swings in inventory in response to changes in demand, as one looks at 

firms further back in the supply	  chain	  for	  a	  product” (Forrester, 1961). The design, 

retrofitting, expansion/shut-down, or the planning of the operation “to meet ever-changing 

market conditions can all be posed as a large scale dynamic decision problem.” (Applequist, 

et al., 2000) 

 

 Aggregation challenges have demonstrated to be a subtle limitation to simplifying 

optimization systems.  “Several physical aggregation levels: globally dispersed entities, 

production lines within a manufacturing site, and even individual equipment items” 

(Applequist, et al., 2000) need to be considering when modeling 

 

 Traditional	  optimization	  methodologies	  “provide	  logical	  guide	  lines	  or	  optimal	  solutions,	  

[but] they are inadequate to deal with the diversity and heterogeneity of numerous 

configuration constraints” (Jiao, et al., 2009), which is an important consideration when 

facing constrained systems like the supply chain of an energy company. 

 

 Unavoidable uncertainty (de Neufville & Scholtes, 2011),	  that	  even	  with	  “sophisticated	  

methods	  such	  as	  time	  series…	  to	  improve	  the	  forecasting	  accuracy,	  uncertainties	  in	  demand	  

are	  unavoidable	  due	  to	  ever	  changing	  market	  conditions” (You & Grossmann, 2008). 

Uncertainty can be considered and managed by means of the concept of financial risk, which 



30 
 

is defined as the probability of not meeting a certain profit aspiration level (Guillén, et al., 

2005), but it can also be defined	  from	  the	  perspective	  of	  other	  effects	  on	  the	  business.	  	  “The 

best remedial [flexible] actions can be identified and their adequacy determined if the 

dynamics of the supply chain are	  modeled	  and	  simulated.” (Suresh, et al., 2008). “The high 

degree of uncertainty is due to the fact that [the] key factors [of a supply chain], all have 

significant stochastic components.” (Applequist, et al., 2000) 

 

The effects of the uncertainties in the product of a simulation and optimizations require further 

attention. Optimization with uncertainties on right-hand-side of the constraints has been addressed 

successfully in recent papers, but,	  “very little work exists on the same with uncertainties on the left-

hand-side of the constraints or in the coefficients of the constraint matrix.” (Khalilpour & Karimi, 

2014).	  This	  could	  be	  an	  important	  cause	  of	  problems	  due	  to	  Jensen’s	  Inequality. 

 

THE	  JENSEN’S	  INEQUALITY 

 

The limitations and considerations for the problem of optimizing or improving a supply chain are 

numerous. This thesis research is focused in one particular aspect: the effect that uncertainty 

creates on the dynamic simulation of a supply chain by the effect	  of	  the	  Jensen’s	  inequality.	   

 

The	  Jensen’s	  inequality,	  named	  after	  the	  Danish mathematician Johan Jensen, in its general 

expression is: 

 

𝐸(𝑓(𝑥)) ≠ 𝑓(𝐸(𝑥)) 

EQUATION 1:	  JENSEN’S	  INEQUALITY GENERAL EXPRESSION 

 

Equation 1 is valid for concave or convex functions. Specifically: 

 

For convex f(x) functions: 

  𝐸(𝑓(𝑥)) > 𝑓(𝐸(𝑥)) 

EQUATION 2:	  JENSEN’S	  INEQUALITY FOR CONVEX FUNCTIONS 
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For concave f(x) functions:  

𝐸(𝑓(𝑥)) < 𝑓(𝐸(𝑥)) 

EQUATION 3:	  JENSEN’S	  INEQUALITY FOR CONCAVE FUNCTIONS 

 

The	  Jensen’s	  Inequality	  produces	  the	  wrong	  results	  on	  non-linear models, and for this is reason is 

also called “Flaw”	  of	  Averages	  to	  contrast	  with	  the	  phrase	  referring	  to	  a	  “law”	  of	  averages.	  “The	  

Flaw of Averages is a significant source of loss of potential value in the development of engineering 

systems	  in	  general” (de Neufville & Scholtes, 2011) and certainly in the specific case of a supply 

chain optimization, which is non-linear for almost every case.	  In	  other	  words:	  “Average	  of	  all	  the	  

possible outcomes associated with uncertain parameters, generally does not equal the value 

obtained from using the average value of the parameters” (de Neufville, 2012). Non-linearity is a 

relevant aspect of most dynamic simulations (Sterman, 2000) and therefore the study of the 

implications	  of	  Jensen’s	  Inequality,	  or	  the	  “Flaw	  of	  Averages”	  could	  be	  substantial	  for	  the	  decision	  

makers of a supply chain. 

 

A straightforward example of this inequality can be observed by the following function: 

 

𝑓(𝑥) = 𝑥 − 3 
EQUATION 4: EXAMPLE OF NONLINEAR FUNCTION 

 

𝑥 = {  2  , −5  , 0.4  , 6  } 

𝑓 𝐸(𝑥) = 2 − 5 + 0.4 + 6
4 − 3 = −2.28 

 

𝐸 𝑓(𝑥) = (2 − 3) + (−5 − 3) + (0.4 − 3) + (6 − 3)
4 = 13.29 

 

𝐸 𝑓(𝑥) = 13.29 

𝑓 𝐸(𝑥) = −2.28 

13.29 > −2.28 



32 
 

This is true for a convex function, like the one presented in Equation 4 and plotted in Figure 2 

below. 

 

 
FIGURE 2: X^2-3 PLOT –EXAMPLE OF A CONVEX FUNCTION- (WOLFRAM ALPHA LLC, 2013) 

 

Jensen’s	  inequality	  holds	  under	  certain	  conditions	  and	  with	  certain	  optimality.	  (Guessab & 

Schmeisser, 2013), and it is materially important for any supply chain model, but particularly for 

complex, highly nonlinear systems like the supply chain of an energy company. The effect of this 

inequality has been tested in some financial context, proving that is statistically significant 

economically	  large,	  concluding	  that	  “Jensen’s	  inequality,	  applied	  to	  finance,	  cannot	  be	  dismissed	  as	  

insignificant, or as a theoretical	  and	  superfluous	  exercise	  in	  finance	  as	  some	  have	  advocated.” (Azar, 

2008) 

SYSTEMS-THINKING 

 

It is necessary to have a system-thinking perspective of the problem of managing a supply chain. 

The supply chain of an energy company is complex in both a detailed way and in a dynamic way 

(Sterman, 2000). The detailed complexity refers to the fact that “many aspects are important—for 

example, product life cycle, demand predictability, product variety, and market standards for lead 

times	  and	  service”	  (Fisher, 1997). This is not only important from the point of view of the structural 

architecture of the supply chain, but in addition because	  “some of these entities (such as the 

refinery units) operate continuously while others embody discrete events such as arrival of a VLCC, 

delivery of products, etc” (Suresh, et al., 2008). 
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A system-thinking perspective will also require considering the bigger picture in which the 

particular supply chain exists. Aspects like sustainability are increasingly complex with developing 

pressures	  and	  “ambiguous challenges that many current environmental management techniques 

cannot adequately address” (Matos & Hall, 2007). Still, the system-thinking approach will require as 

well	  to	  include	  detailed	  aspects	  of	  the	  systems,	  like	  “the	  internal	  low-level decisions (local 

scheduling, supervisory control and diagnosis, incidence handling) and the implications of 

incorporating these decisions for the dynamics of the entire supply chain (production switching 

between	  plants,	  dynamic	  product	  portfolios)	  have	  not	  yet	  been	  studied.” (Puigjaner	  &	  Laınez,	  

2008). A systems-thinking management approach to a supply chain optimization should take in 

consideration the overlapping decision spaces and thus agreement among the different decision 

makers has to be achieved within the boundaries of the overlapped regions (Androulakis & 

Reklaitis, 1999).  

 

The internal portion of a supply chain of an energy company require a systems-thinking approach, 

especially	  when	  considering,	  for	  example,	  that	  a	  model	  can	  include	  “external	  supply	  chain	  entities	  

such as suppliers and customers, refinery functional departments such as procurement and sales, 

refinery units such as pipelines, crude tanks, CDUs, reformers, and crackers, and refinery 

economics.” (Suresh, et al., 2008). The challenge for a high level decision maker of a supply chain is 

that, particularly in a major	  energy	  company,	  they	  don’t	  have	  centralized control of all materials 

and information flows.  

 

“Clearly the reality is that the entities operate in a decentralized and asynchronous manner. Entities 

(plants, suppliers, customers and shippers) have mainly their own but also some shared decision 

variables…Thus	  management	  of	  a	  supply	  chain	  really	  involves	  the	  coordination	  of	  the	  activities	  of	  

semi-autonomous	  entities	  with	  overlapping	  decision	  spaces” (Applequist, et al., 2000).  “The	  

asynchrony of operation is due to the fact that these systems are essentially dynamic entities whose 

optimal	  policy	  has	  to	  be	  implemented	  continuously	  as	  soon	  as	  it	  has	  been	  identified.” (Androulakis 

& Reklaitis, 1999) 

 

In addition, the	  system	  shouldn’t	  be	  only	  evaluated	  under	  regular	  and/or	  ideal	  conditions.	  The	  

analysis should definitely consider special cases, like the potential impacts of emergencies or 

disruptive	  events	  like	  “man-made and natural disasters on chemical plants, complexes, and supply 
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chains… to estimate the scope and duration of disruptive-event impacts, and overall system 

resilience” (Ehlen, et al., 2014). In	  this	  context,	  “the	  allocation	  of	  resources	  to	  properly	  train	  

employees	  in	  disaster/disruption	  prevention	  activities”	  (Ojha, et al., 2013) is a critical aspect to 

consider that can be really challenging to model. 

 

It was previously mentioned that, when facing computational performance challenges, decision 

makers try to simplify their models in order to reduce complexity and reduce CPU time. This is, in 

practice, limited by the fact that in many cases it is just not possible to simplify without losing 

meaning of the model for managerial purposes. Regarding this approach, it is important to 

remember	  the	  advice	  of	  “Everything Should Be Made as Simple as Possible, But Not Simpler” 

(attributed to Einstein and others).  

 

In systems architecture, this is referred as the art of defining the appropriate level of complexity, 

which	  can	  be	  done	  by	  “scoping,	  aggregation,	  partitioning,	  and	  certification” (Maier & Rechtin, 

2002). This means that, in a way,	  complexity	  is	  unavoidable	  in	  real	  problems,	  since	  “complexity	  

arises in a system as more is asked of it (performance, functionality, robustness, etc.) and 

complexity	  manifests	  itself	  as	  the	  interfaces	  between	  elements	  or	  modules	  are	  defined”	  (Cameron & 

Crawley, 2012). 

LIMITED FLEXIBILITY 

 

So far, the discussion has only considered the complexity of modeling in general and the specific 

implications of some aspects like the uncertainty and computation time. On top of that, it is 

necessary to think about the systems as processes managed by people taking decisions and 

operating in an intelligent way to adapt to changing conditions (de Neufville & Scholtes, 2011). This 

is called adaptability or flexibility of systems, which it has been proved material for supply chains 

management since “supply	  chain	  portfolio	  flexibility	  is	  an	  important	  determinant	  for	  small-to-

medium-sized	  firm	  satisfaction	  with	  supply	  chain	  portfolio	  performance.” (Tokman, et al., 2013).  

 

The dynamic capacity of the system to adapt its configurations to changing conditions is another 

layer of complexity for the system, moreover, is a factor that will certainly change the results of the 

simulations and optimization models. 
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PLUG & PLAY MODEL 

 

INTRODUCTION TO THE PLUG&PLAY MODEL 

 

This section describes a model used to explore the effects of considering uncertainty in the inputs of 

the model to evaluate the hypothesis of this research, which is that not considering the variability of 

the inputs of the model will produce the wrong result.  

 

In order to achieve the objective of this research, different configuration of the inputs of a dynamic 

simulation-optimization will be tested to evaluate the effect of singular definitions of the inputs on 

the results and dynamics of the system. To focus on efficiently achieving this objective, the research 

methodology plugged & played an already developed model. This strategy stays away from getting 

into the discussion of the validity of the model itself. If the reader is interested in analyzing the 

internal mechanics of the model, it is suggested to study the original paper to find the information 

and academic discussion about it. 

 

 The plug & play model was taken from the research presented in 2008 in the Computers and 

Chemical	  Engineering	  Journal,	  volume	  32	  in	  the	  paper	  titled	  “Decision	  support	  for	  integrated	  

refinery	  supply	  chains	  Part	  1:	  Dynamic	  simulation”.	  The	  authors	  of this paper are Suresh S. Pitty, 

Wenkai Li, Arief Adhitya, Rajagopalan Srinivasan and I.A. Karimi, at that time from the Department 

of Chemical and Biomolecular Engineering of the National University of Singapore and the Institute 

of Chemical and Engineering Sciences. 

 

The model called Integrated Refinery In-Silico, or IRIS (Suresh, et al., 2008), was originally 

implemented for Matlab R2007a requiring the Matlab toolboxes Simulink and Signal Processing 

Blockset (Figure 3: IRIS block diagram).	  IRIS	  for	  Matlab	  was	  shared	  for	  this	  thesis	  research	  by	  

Professors	  Rajagopalan	  Srinivasan	  [raj@iitgn.ac.in]	  and	  Arief	  Adhitya	  	  [arief_adhitya@ices.a-

star.edu.sg]	   on Wednesday, September 25, 2013 8:33 AM via email. Together with the settings and 

results from the original paper (Appendix 1: IRIS settings and results from original paper). 
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FIGURE 3: IRIS BLOCK DIAGRAM (SURESH, ET AL., 2008) 

 

IRIS, as described by its authors in the original paper: 

 

“…	  is a dynamic model of an integrated refinery supply chain. The model explicitly considers 

the various supply chain activities such as crude oil supply and transportation, along with 

intra-refinery supply chain activities such as procurement planning, scheduling, and 

operations management. Discrete supply chain activities are integrated along with 

continuous production through bridging procurement, production, and demand 

management activities. Stochastic variations in transportation, yields, prices, and 

operational problems are considered in the proposed model. The economics of the refinery 

supply chain includes consideration of different crude slates, product prices, operation 

costs,	  transportation,	  etc…	  IRIS	  allows	  the	  user	  the	  flexibility	  to	  modify	  not	  only	  parameters, 

but also replace different policies and decision-making algorithms in a plug-and-play 

manner. It thus allows the user to simulate and analyze different policies, configurations, 

uncertainties, etc., through an easy-to-use	  graphical	  interface.” (Suresh, et al., 2008) 

 

In order to run the model on Matlab R2013a, an upgrade check was run on the model and some 

blocks were updated using the slupdate() Matlab function for automatic update of the blocks. Also, 

some blocks were considering continuous signals instead of the required discrete signals for the 

model. The blocks were set as discrete at a sample time of 0.01, which is the same sample time from 
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the fundamental signal defined on the solver of the original model (Figure 4). After these 

adjustments, the model was ready to run on Matlab R2013a and all the settings and results from the 

original paper were replicated to ensure calibration. 

 

 
FIGURE 4: FUNDAMENTAL SAMPLE TIME 

 

The simplicity that this model offers allows the perfect platform to explore the results of 

considering uncertainty into de inputs and assumptions of the model. As described by the authors, 

“IRIS	  can	  serve	  as	  an	  ideal	  test bed for [supply chain] analysis both	  for	  industry	  and	  academia” 

(Suresh, et al., 2008).  

 

RELEVANCE OF THIS PLUG & PLAY MODEL FOR PRACTICAL VALUE CHAIN 
OPTIMIZATION 

 

The IRIS model used, in a plug & play format, in this research, has been developed to support 

“decision making in a petroleum refinery should consider the overall supply chain performance” 

(Suresh, et al., 2008). The possibility to expand the analysis to get closer to crude to customer (C2C) 

perspective is useful for the energy industry because it allows bringing a systems-thinking 

perspective.  An element like margin variability (which corresponds to crude price and product 

price variability) has high impact per the 80/20 rule in practice.  
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The original configuration proposed in the paper to present IRIS is valuable since it allows a generic 

assessment of the system from an academic point of view. Starting from this exercise, specific 

companies have the option to customize the configuration to it better to their unique realities. The 

dynamic model (IRIS) is useful as a tool for integrated decision support of a supply chain 

“reconfiguration studies such as change of demands, cycle times, or tank capacities”	  (Suresh, et al., 

2008). This is possible through adjusting simple model parameters. 

 

Moreover, a model like IRIS brings a broad systems approach with the possibility to explore 

different policies, such as “for demand forecasting, product pricing, production [plans], parcel 

sequencing, and	  others” (Suresh, et al., 2008). A model like IRIS can allow trying different scenarios 

and configurations of multiple systemic aspects of a supply chain of an energy company 

simultaneously. This is useful for analytic challenges like system optimization, and multi-objective 

improvement. Research has shown that optimization can be achieved using a diverse set of 

algorithms and simulations (Koo, et al., 2008). 

 

A plug & play model like IRIS could be also useful for industrial training (Koo, et al., 2008). This is 

valuable since it allows having a systemic perspective of a supply chain system with the capability 

of being configured in a very straightforward way.  

 

LIMITATIONS OF THE PLUG & PLAY MODEL 

 

The limitations of the use of a plug & play model like IRIS will depend on the particular application 

that the user defines.  For example, if the model is used for training purposes, the limitations will be 

related to the required competences to implement the model in software or, use already 

implemented software like Matlab. 

 

Other limitations can be related to the lack of specificity or scope of the model for precise purposes, 

like optimizing the distribution of products or taking specific decision of a particular aspect of the 

system described by the model. The model, however, has the flexibility to add or expand some 

particular aspects on the interest of the use.  
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RUNNING THE MODEL 

METHODOLOGY OVERVIEW 

In order to evaluate the hypothesis of this research the following steps are followed: 

 

1.  A pre-developed –plug & play model called IRIS is obtained, implemented and tested. This 

is	  explained	  in	  the	  chapter	  “Plug & Play Model”. 

2. The original configuration of the model is deterministic emulating uncertainty, in other 

words,	  it	  doesn’t	  rely on repeated random sampling to obtain numerical results, but 

incorporates a variation percentage and a variation seed that is fixed. In practice, this means 

that if the model runs several times the numerical results are going to be the same (Suresh, 

et al., 2008).  

3. The original configuration is modified to eliminate the variation percentage. This is 

achieved by practically setting the variable to zero (0) and running the simulation again one 

more time (Case 0: Original setting without uncertainty (no variation %)) 

4. Uncertainty is incorporated in targeted ways. Different modules of the system are defined 

as uncertain with some realistic variation and the simulation is stochastically iterated 1,000 

times. (Case 1: Focalized Uncertainty) 

5. Stochasticity is incorporated in fourteen of the variables in a standard way (a random value 

with normal distribution). The dynamic simulation is stochastically iterated 1,000 times. 

(Case 2: standard uncertainty) 

6. The distributions and mode o behaviors of the results of the simulations are compared 

statistically and graphically to analyze the effect of uncertainty on the dynamic simulation.  
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BASE CASE: ORIGINAL CONFIGURATION FROM THE ORIGINAL PAPER 

The base case is the one presented in 2008 in the Computers and Chemical Engineering Journal, 

volume	  32	  in	  the	  paper	  titled	  “Decision	  support	  for	  integrated	  refinery	  supply	  chains	  Part	  1:	  

Dynamic	  simulation”.	  In order to run different configurations and compared them with known base 

cases, the settings from the configuration in the original paper were considered. If the reader is 

interested in understanding the details of the configuration of this plug & play model, it is 

recommended to study the original paper (Suresh, et al., 2008).  

 

The simulation from the original paper produced results on several metrics that are described in 

Figure 5. In order to compare different cases, this research will focus on the Total Profit metric: 

 
FIGURE 5: FROM THE TABLE "COMPARISON OF KPIS FROM THE DIFFERENT CASES" FROM THE ORIGINAL 

PAPER (SURESH, ET AL., 2008) 

 

Other metrics are also useful for the analysis of this research. The crude inventory, for example, 

allows observing the internal dynamics of the system. Graphical results of the base case simulation 

including for crude inventory profile is shown in Figure 6. 
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FIGURE 6: BASE CASE: CRUDE INVENTORY (SURESH, ET AL., 2008) 

 

The total profit over time for the original configurations is represented in Figure 7 using the 

statistical software Minitab 16. This graph shows the effects of the variable Production cycle time 

(days) originally set as 7 days (represented through the moving averages of the time steps of 0.01 

days). 

 

 
FIGURE 7: TOTAL PROFIT IN MILLIONS (ORIGINAL SIMULATION) 
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The crude inventory (Figure 6) was replicated with time horizon 120 days in Figure 8. 

 

 
FIGURE 8: CRUDE INVENTORY WITH 60 DAYS TIME HORIZON (REPLICATING FIGURE 6) 

 

CASE 0: ORIGINAL SETTING WITHOUT UNCERTAINTY (NO VARIATION %) 

IRIS emulates stochastic variables using a variation percentage and a variation seed concept that is 

implemented in a single simulation. The original research used random number generators in 

Simulink to represent the uncertainty. This is achieved by specifying a random number seed, which 

determines the sequence of random numbers generated. This means that if the simulation is 

repeated using the same seeds, IRIS should get exactly the same sequence of random numbers and 

thus the same results, therefore, it is not necessary to run multiple times the model with this 

definition of uncertainty. 

 

According to the authors of the original paper, it is possible to set the variation as a very small 

number, e.g. 0.00000000001, which is essentially 0, and the variation seeds can be any arbitrary 

numbers; this will represent different random number sequences. Following this approach, for the 

purpose of this research fourteen of the variables were redefined without variation, compared with 

Table 2, according to the following Table 1: 
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TABLE 1: VARIABLES VALUES REDEFINED TO ELIMINATE UNCERTAINTY 
Subsystem Variable Definition in m.file 

Refinery 
Economics 

Product price variation percentage (%) proprivarper=0.00000000001; 

Sales Magnitude of demand increase magdeminc=0.00000000001; 
Demand variance percentage (%) demvarper=0.00000000001; 

Suppliers Crude amount variation percentage (%) cruamovarper=0.00000000001; 
Crude price variation percentage (%) cruprivarper=0.00000000001; 
Disruption occurrence seed disoccsee=0.00000000001; 
Disruption magnitude seed dismagsee=0.00000000001; 

Reformer Reformer yield variation (%) refyievar=0.00000000001; 
Cracker Cracker yield variation (%) crayievar=0.00000000001; 
CDU CDU yield variation (%) CDUyievar=0.00000000001; 
 

The results on the metric of crude inventory of simulating IRIS for a time horizon of 120 days with 

the configuration described in Table 1 are the following: 

 

 
FIGURE 9: CRUDE INVENTORY FOR SIMULATION WITHOUT VARIATION % 

 

Figure 9 shows a very different dynamic behavior than the one observed with the original 

configuration considering the variation % (Figure 8). This behavior is dynamically stable after a 

certain period (approximately day 25), with two crudes experiencing oscillation and three having a 

constant behavior over time. Oscillations are generally produced by feedback loops that are 

negative and processes that overshoot the goals (Sterman, 2000). It is quite possible that this 

oscillation is produced by the fact that the demand has cycles (7 days) in this case and therefore the 

goal is not achieved in a constant way.  
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The total profit at the end of the simulation without uncertainty is $60.47 million, which is arguably 

not very different from the $61.96 million produced by the simulation with variation %.  This 

difference is not yet produced by	  the	  Jensen’s	  inequality	  previously	  described	  (Equation 1), because 

both simulation consider deterministic inputs. The original paper emulates the stochasticity of the 

variables defining a variation % and a variation seed that is deterministic, in other words, it is an 

expected value of variation. 

 

Even when not considering the numerical difference between the case with variation and without 

variation, it is important to analyze the mode behavior of the dynamic system. Figure 10 shows the 

comparison between the behavior, in a time series plot, of the case with variation % and without it. 

It is clear from the image that, even when the final result is close, the behavior of the system over 

time is completely different, in system dynamics words; the fundament mode of dynamic behavior 

(Sterman, 2000) is different.  

 

 
FIGURE 10: COMPARISON BETWEEN BASE CASE AND CASE 0 USING TIME SERIES OF THE MOVING 

AVERAGES 

 

The similitude between the total profit over the 120 days with variation % and without variation 

performance will produce very different mode of behaviors. Both behaviors will require very 

different management styles, and since the performance of the systems should be relevant 

information for the decision makers (Katz, 2004), this difference is material.  
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STOCHASTIC SIMULATIONS 

 

CASE 1: FOCALIZED UNCERTAINTY 

Case 1 analyzes uncertainty from specific, focused perspective, showing how, depending on where 

the uncertainty is defined, it will have a different impact on the final result and mode of behavior of 

the simulation.  

 

FIGURE 11: MODULES WITH STOCHASTIC VARIATION FOR CASE 1A AND 1B 

 

Two modules of IRIS were selected for their position in the structure of the system. The module 

“Sales”	  is	  at	  the	  beginning	  of	  the	  structure	  of	  the	  system,	  and	  therefore	  it	  is	  expected	  that	  its	  

variation	  will	  have	  an	  impact	  on	  the	  internal	  feedback	  loops.	  On	  the	  other	  hand,	  the	  “Refinery	  

Economics”	  module	  is	  at	  the	  end	  of	  the	  system	  and	  therefore	  its	  variation	  wouldn’t	  have	  much	  

impact on the internal loops of the system. 

CASE 1A: UNCERTAINTY OF REFINERY ECONOMICS  

 

This	  variation	  is	  incorporated	  in	  the	  “Refinery	  Economics”	  module,	  marked	  by	  a	  red	  circle	  in	  Figure 

11. Based on real prices of crude from NYMEX, U. S. Energy Information Administration for 120 

days, the variation percentage of a crude oil can be 3.8% in a period of 120 days (New York 
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Mercantile Exchange (NYMEX), 2013). This simple calculation and the code to simulate are 

described in Appendix 6: Defining and Simulating specific variability. According to that information, 

the percentage of variation for a period of 120 days is defined as 3.8% in a normal distribution with 

20% of variation. 

 

Running 1,000 simulations1 the following distribution of results: 

 

 
FIGURE 12: HISTOGRAM AND STATISTICS FOR CASE 1A 

 

Figure 12 shows an expected performance of the process after the 120 days of simulation of $55.8 

million total profit. This is compared with the Case 0 (no variation) of $60.5 million total profit after 

day 120.  This is confirmed with a one-sample t-test that rejects the null hypothesis so they are not 

equal.  

 

One-Sample T: Total Profit for Case1a versus Case 0 
 
Test of mu = 60.47 vs not = 60.47 
 
Variable          N    Mean  StDev  SE Mean       95% CI            T      P 
t(120)_Case1a  1000  55.761  8.419    0.266  (55.238, 56.283)  -17.69  0.000 

 

Figure 13 is clearly a concave function, and therefore it is a case of	  Jensen’s	  Inequality	  as	  described	  

in Equation 3: 

 

                                                             
1It took 22,140.2 seconds in Matlab R2013a with a computer with an Intel Core i5-3320M CPU@2.60GHz with 
8.00GB of installed RAM with 2 cores (parallel computation). 
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EQUATION 5: CONCAVE FUNCTION SOWING JENSEN'S INEQUALITY 

𝐸 𝑓(𝑥) < 𝑓 𝐸(𝑥)  

𝐸 𝑓(𝑥) = 55.71 

𝑓 𝐸(𝑥) = 60.47 

55.71 < 60.47 

 

A time series plot is useful in order to understand the mode of behavior of the dynamic simulation. 

Figure 13 represents in different colors different statistics of the simulation, from the minimum (or 

worst case) to the maximum (or best case). These stochastic scenarios are interesting from a 

managerial perspective since they modify the results of the process, but not the mode of behavior of 

goal seeking pattern or growth and decline. 

 

 
FIGURE 13: TIME SERIES PLOT FOR DIFFERENT STATISTICS FOR CASE 1A 
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This effect can have multiple causes. Some of them could be: 

 The behavior of the dynamic simulation depends on the structure of the model dynamically 

simulated (Sterman, 2000). The way in which IRIS internal structure defines the dynamics 

of the subsystem Refinery Economics is important since this module is connected to the 

output	  and	  it	  almost	  doesn’t	  impact	  the	  internal	  feedback	  loops	  of	  the	  operation	  of	  the	  

supply chain. 

 The economics of the refinery can be considered contextual factors, not necessarily 

controllable by the management. In most cases, those contextual factors should be 

considered and planned strategically to not affect the mode of behavior. In other words, the 

system should be robust enough to support external uncertainty without modifying its 

behavior.  

 The influence of the uncertainty is not material enough to modify the dominance of different 

internal feedback loops of the system. This means that it could be possible with other values 

of uncertainty to observe tipping points were the behavior changes 
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CASE 1B: UNCERTAINTY OF SALES 

 

As in Case1a, this case starts from the configuration of no variation % proposed in Case 0.  Here, the 

only	  change	  is	  made	  in	  the	  subsystem	  called	  “Sales”	  in	  IRIS	  which	  is	  marked	  as	  a	  green	  circle	  in	  

Figure 11, adding uncertainty in the magnitude of demand increase and demand variance. This 

change was made on a base of parallel computation (proposed in Equation 9) as described in 

Appendix 6: Defining and Simulating specific variability. 

 

In this case, the results of total profits (million $) after 120 days of simulation2: 

 

 
FIGURE 14: HISTOGRAM AND STATISTICS OF TOTAL PROFIT FOR CASE1B 

 
This case gets a much closer value of total profit than the Case 0 expected result ($60.5 million), but 

it is still statistically not equal. This is probed with the following one-sample t-test: 

 

One-Sample T: Total profit for Case 1b versus Total Profit for Case 0 
 
Test of mu = 60.47 vs not = 60.47 
Variable          N    Mean   StDev  SE Mean       95% CI          T      P 
t(120)_Case1b  1000  61.969  14.481    0.458  (61.070, 62.867)  3.27  0.001 

 

Two other comparisons of these results with the results produced by Case1a and Case1b are, first, 

that in Case 1b the minimum value of total profits (worst case) is negative ($-12.1 million), while in 

Case 1a the minimum value is just $31.3 million (still positive). Second, when comparing the 

distribution of the results of both Case 1a and Case 1b is that Case 1b has a bigger range of values 

(Figure 15). 
                                                             
2 With a computational time of 22,195.5 seconds 
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FIGURE 15: COMPARISON OF DISTRIBUTIONS FOR CASE1A AND CASE1B 

 

The different distributions of Case 1a and Case 1b are relevant for managers because variability 

could be perceived as risks for the business. In other words, an equal variation % in the subsystem 

Sales represents a bigger risk than an equal variation % in the subsystem Refinery Economics. 

These results are statistically not equal as described in Appendix 7: Comparison between results of 

Case 1a and Case 1b. 

 

Also	  relevant	  for	  the	  manager’s	  point	  of	  view	  is	  the	  behavior	  of	  the	  dynamic system. Figure 16 

shows a comparison of the mode behavior of both the expected value of Total Profit for Case 1a and 

Case 1b. The oscillation observed in Case 1b is not observed in Case 1a. The behavior of dynamic 

simulations depend on the structure of the dynamic model, and also of the dominance of the 

different internal feedback loops (Sterman, 2000).	  If	  the	  values,	  because	  of	  Jensen’s	  Inequality, 

change with and without stochastic uncertainty, then the dominance of the different internal 

feedback loops will also change, producing a different mode of behavior. 
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FIGURE 16: COMPARISON OF EXPECTED TOTAL PROFIT FOR CASE 1A AND CASE 1B 
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CASE 2: STANDARD UNCERTAINTY 

 

Uncertainty can also be incorporated in a standardized way into the model. This case explores the 

definition of uncertainty over fourteen variables and analyzes its consequences over the results and 

mode of behavior of the simulation. For this case, uncertainty is defined as a stochastic factor of 

some of the variables, as described in Appendix 3: Definition of stochastic uncertainty. 

 

The result of simulating this configuration 1,000 times3 for total profits after 120 days is $63.68 

million4. It is arguable that this value is not materially different from the original simulation with 

the uncertainty incorporated in the variation % of the model with a result of $61.96 million (Base 

case: Original configuration From the original paper); however, when considering the stochastic 

simulation, the final distribution of the output (total profit at day 120th) shows a wide spectrum of 

possibilities to consider (Figure 17). 

 

Even when the model is highly non-linear, the fact that the metric Total Profit is cumulative is 

smoothing	  the	  effect	  of	  Jensen’s	  Inequality,	  since	  the	  behavior of the metric is quite close to a line. If 

the model was reconfigured to get closer to a line, the expected value of the stochastic simulation 

would not be different from the value obtained with the deterministic case, like shown in Appendix 

10: Configuring IRIS for steady increment of Total Profits. 

 

 
FIGURE 17: HISTOGRAM AND STATISTICS FOR CASE 2 

 

                                                             
3 The number of iterations was validated in Appendix 5: Validation of the number of iterations for the 
stochastic simulation 
4 22,937.1 seconds of CPU time 
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Statistically, a one-sample t test can probe that, even when very close. In this case null hypothesis 

that the value of Total Profit for the Base Case ($62 million) is equal to the expected value of the 

total profit computed with a stochastic simulation is rejected. This can be interpreted as that they 

are statistically not equal. 

 

One-Sample T: Total Profit after 120 days for Case 2 vs Total Profit of Base Case  
 
Test of mu = 62 vs not = 62 
 
Variable     N    Mean   StDev  SE Mean       95% CI          T      P 
T(120)    1000  63.683  17.357    0.549  (62.606, 64.760)  3.07  0.002 

 

The actual distribution includes probable cases that are not visible with the deterministic approach. 

Figure 18 illustrates percentiles 25, 50 and 75 of the probability plot.  

 

 
FIGURE 18: PROBABILISTIC PLOT FOR TOTATL PROFIT CASE 2 

 

Figure 19 illustrates the results of total profit over the time of the stochastic simulation, showing 

the behavior of the expected value, max and min, and the percentiles 25 and 75.  It is observable in 

this graph that the standard deviation grows over time. 
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FIGURE 19: TIME SERIES PLOT OF DIFFERENT STATISTICS FOR CASE 2 

  

This effect is a propagation of the probabilistic scenarios over the time horizon of a dynamic 

simulation. Figure 20 illustrates an almost steady expansion of the standard deviation over time. 

This is a considerable effect for managers since the longer the horizon of the simulation, the bigger 

the range of probable scenarios.  
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FIGURE 20: PROPAGATION OF STANDARD DEVIATION 

 

120.00108.0096.0084.0072.0060.0048.0036.0024.0012.000.01

175

150

125

100

75

50

25

0

Days (Time Step of 0.01 days)

m
ill

io
n 

$

E(I)
Min(I)
p25(I)
p75(I)
Max(I)

Variable

Time Series Plot of E(I), Min(I), p25(I), p75(I), Max(I)



55 
 

SENSITIVITY ANALYSIS 

 

Case 2 used a standard configuration of uncertainty for a defined set of variables for the IRIS model 

(Table 3). The problem with this approach is that, in practice, it is not possible to analyze the 

individual effect that uncertainty has on each variable. In order to isolate the effect of the 

uncertainty on different variables, separated stochastic simulations were conducted with stochastic 

variability in only one variables and everything else fixed.  

 

The original configuration of Base Case was run multiple times using a parallel implementation in 

Matlab including the stochastic variability defined in Table 3 on at a time, which means 14 different 

simulations of 1,000 iterations each. The computation of this sensitivity analysis took 296,419.3 

seconds (82.3 hours) in the computer used for this research.  This time the iteration of stochastic 

variables of the inputs were also recorded. The correlation of the stochastic variation of each of the 

fourteen variables with the total profit results were tested to identify which variables have a 

significant impact on the result when they vary (Appendix 8: Uncertainty versus Sensitivity), 

together with a graphical comparison with a Marginal Plot. 

 

The variables that have a significant impact on the total profit when they are stochastically varied 

are: 

 

 Tank Volume (kbbl) 

 Product price variation percentage (%) 

 Operating cost (K$/kbbl) 

 Product or crude inventory cost (K$/kbbl) 

 Crude amount variation percentage (%) 

 Demand variance percentage (%) 

 Pumping rate (kbbl/hr) 

 

The effects of the variation of this variables, as defined in Case 2 (Appendix 3: Definition of 

stochastic uncertainty), are presented in Figure 21. 
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FIGURE 21: TORNADO CHART FOR SIGNIFICANT VARIABLES 

 

From these variables, the only one that has a stochastic variation directly related to Total Profit 

result, in other words, the only one that produces more Total Profit when vary more, is the Crude 

amount variation percentage (%). This is relevant	  for	  managers	  since	  stochastic	  variation	  doesn’t	  

just produce different effects on the variation of whatever results defined as a metric for a system, 

but also it will vary in a different direction, which can be interpreted as that some variation can be 

good for the system. The correlation between this specific variable is described in details in 

Appendix 8: Uncertainty versus Sensitivity. 
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THE HUMAN SIDE OF THE	  EFFECTS	  OF	  JENSEN’S INEQUALITY ON THE DYNAMIC 
SIMULATION 

 

Discontinuity is a source of non-linearity and management can creates discontinuity. This happens 

because managers or system operators decide to take some major decision about a project creating 

change in the function or model of behavior (de Neufville, 2012). The decisions will depend on 

many aspects: culture of the organization, particular context, results from previous periods, 

external pressures, personal goals, etc. Particularly important are the current mode of behaviors of 

the system.  Different mode of behaviors will produce different managerial behaviors, for example, 

a declining metric of performance could produce different decisions than an increasing one. 

 

In practice, the context is analyzed, most of the times, using a short time horizon and a limited set of 

data. This could produce a biased perception of the process performance that will, most probably, 

impact the behavior. In addition, disruption and special events will certainly influence the 

perception of status of performance, driving different behaviors or changing the function of 

performance producing non-linearity. 

 

The practical consequences on the results of a system are that the estimated result will be wrong, 

and that the management would produce a personal resistance to recognizing and dealing with 

uncertainty. This is augmented when managers deal with many client relationships and has to 

respond to expectations of certainty (de Neufville, 2012). 
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CONCLUSIONS 

 

The analysis of different configurations of uncertainty in the dynamic simulation allowed to 

observe the following conclusions: 

 

1. Considering stochastic variability can have a major effect on the performance of the system. 

Since the dynamic model using in this research (IRIS) is non-linear, this is an empirical case 

of	  Jensen’s Inequality. A specific case of this effect on a concave function was described in 

Case 1a: Uncertainty of refinery economics. 

 

2. Even if the effect of uncertainty and non-linearity don’t	  impact	  the	  expected	  value of the 

model, it will produce a distribution of results and a mode of behavior that could be 

significantly relevant for the decision maker. The mode of behavior of the dynamic results 

can foster completely different human behaviors from the managers and decision makers, 

even if the final simulated result is statistically not different. 

 

3. The effects of stochastic variation and complexity on the average, risk or mode of behavior 

can be non-related, which means that, for example, a case with better expected value could 

also produce a worse mode of behavior or risk (Figure 15). 

 

4. The stochastic simulation of a dynamic model like IRIS can produce contra-intuitive results 

due to dynamic complexity. Figure 36 represented a variable that increased total profits 

when it increased variability 

 

5. The dynamic simulation in the case of IRIS considered a defined and limited time horizon. 

The effect of	  the	  stochastic	  simulation	  (Jensen’s	  Inequality)	  seemed to be propagating over 

the standard deviation, showing a steady increment over the time horizon of the simulation 

(Figure 20).The relevance of this insight is that, since the standard deviation is growing 

over the time horizon of the dynamic simulation, the interval of confidence for the expected 

value will also grow, which could eventually trick the decision maker to think that the 

model is producing a similar result, when in fact is just the model losing the precision to 

make a significant comparison. 
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6. A sensitivity analysis (Appendix 8: Uncertainty versus Sensitivity) showed that stochastic 

variability is not important for every variable in the model. This is important since the 

decision maker should focus the efforts only on the variables that are relevant from the 

perspective of the sensitivity of the results of the system to their uncertainty. 
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APPENDIX 1: IRIS SETTINGS AND RESULTS FROM ORIGINAL PAPER 

 

 
FIGURE 22: IRIS SETTINGS AND RESULTS FROM ORIGINAL PAPER 
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Some of the variables considered by the original model are: 

 

 Simulation horizon: Since the model is a dynamic simulation, the time horizon represents 

the simulated time that the dynamic model will run (Sterman, 2000), which is not the same 

than	  the	  running	  time	  of	  the	  model,	  for	  example,	  “IRIS	  simulation	  run	  for	  a	  120-day horizon 

requires ∼90	  s	  on	  a	  Pentium	  IV,	  2.8	  GHz	  processor” (Suresh, et al., 2008). Interestingly, this 

occurs in a sequence of discrete time steps (or signals in Matlab) and not necessarily in a 

continuous time like the real world. (MathWorks, 2013). In the original base case the time 

horizon is defined as 120 days. 

 

 Max throughput: IRIS	  considers	  that	  “the actual throughput is selected to also ensure 

operation	  within	  the	  minimum	  and	  maximum	  operable	  throughput	  limits” (Suresh, et al., 

2008). This assumes that the maximum operable limit is a constant; however, in many cases 

the maximum capacities have a level of uncertainty due to reliability, operation strategy and 

many other factors that can limit the capacity.  

 

 Tank capacity: The refinery modeled by IRIS segregates crudes in different tanks not 

allowing the mixing of crudes. The model represents five (5) tanks for each crude type, each 

having a fixed capacity making total storage capacity of 5 times the fixed capacity of each 

tank. In the base case of the original paper, the total tank capacity is 1250 kbbl formed by 

each tank having a capacity of 250 kbbl (Suresh, et al., 2008). 

 

 Mean product demand:  the refinery of the model from the point of view of a supply chain 

can operate either through a push or a pull-mode. In IRISI, the supply chain is managed by a 

production plan comprising the planned throughput and production mode, based on 

forecast product demands (Suresh, et al., 2008). 

 

 Quality uncertainty seed: During product delivery, it may happen that a product fails quality 

tests and is rejected by the customer. This is modeled by IRIS using an stochastic, binary 

variable, whose value of 1 indicates product acceptance and 0 product rejection. This 

variable is generated randomly for all products at each due date and is dependent on the 

quality index random seed. (Suresh, et al., 2008) 
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 Disruption occurrence seed: Disruption scenarios can be defined by the user of the model to 

simulate different supply cases about the occurrence of the transportation delay. (Suresh, et 

al., 2008) 

 

Specifically, the original IRIS model takes the values for the variables assigned directly from the 

Matlab Simulink subsystem masks, like exemplified in Figure 23.  

 

 
FIGURE 23: EXAMPLE OF VARIABLE VALUE ASSIGNMENT IN THE MATLAB SIMULINK SUBSYSTEM'S MASK 

 

For this research, some of the variables were redefined from the same Matlab *.m that will run the 

simulations later with uncertainty. The variables were described in the *.m file in Table 2: 

TABLE 2: VARIABLE DEFINITION AND VALUE ASSIGNMENT 
Subsystem Variable Definition in m.file 

Customer Quality uncertainty seed quauncsee=[68 48 48 98];  
Control Panel Number of crudes numcru=5; 

Crude storage capacity limit (kbbl) crustocaplim=[1250 1250 1250 1250 1250]; 
Crude tank volume (kbbl) crutanvol=250; 
Production cycletime (days) procyc=7; 
Planning horizon (days) plahor=28; 
Maximum throughput (kbbl/day) maxthr=250; 
Minimum throughput (kbbl/day) minthr=100; 
Crude safety stock (kbbl) crusafsto=100; 
Product safety stock factor (0 to 1) prosafstofac=0.2; 

Refinery 
Economics 

Product price variation seed varprodprice=[10 12 14 16]; 
Product price (K$/kbbl) prodprice=[79 76 68 47]; 
Product price variation percentage (%) proprivarper=1; 
Demurrage charge (K$/day) demcha=100; 
Operating cost (K$/kbbl) opcost=2; 
Product or crude inventory cost (K$/kbbl) procruinvcost=0.05; 
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Penalty for order violation (K$/kbbl) penordvio=[5 5 5 5]; 
Sales Actual demand variation percentage (%): actdemvarper=[5 5 5 5]; 

Magnitude of demand increase magdeminc=2; 
Mean product demand (kbbl/day) meaprodem=[405 100 205 165]/7; 
Demand variation seed demvarsee=[30 40 50 60]; 
Forecast vs actual demand seed forvsactdemsee=[50 51 51 51]; 
Demand variance percentage (%) demvarper=25; 

Suppliers Number of suppliers numsup=4; 
Suppliers 1-3 crude amount upper bounds 
(kbbl) 

supcruamoub=[680 680 680 680 680;700 700 700 
700 700;720 720 720 720 720]; 

Suppliers 1-3 crude amount variation seeds supcruamovarsee=[10 12 14 16 18; 20 22 24 26 28; 
30 32 34 36 38]; 

Crude amount variation percentage (%) cruamovarper=5; 
Suppliers 1-3 crude prices (K$/kbbl) supcrupri=[55 56 53 50 52;55 56 53 50 52;55 56 53 

50 52]; 
Suppliers 1-3 crude price variation seeds supcruprivarsee=[10 12 14 16 18;20 22 24 26 28;30 

32 34 36 38]; 
Crude price variation percentage (%) cruprivarper=1; 
Emergency crude price (K$/kbbl) emecrupri=[65 66 63 60 62]; 
Disruption occurrence seed disoccsee=78; 
Upper limit on disruption awareness (days) uplimdirawa=17; 
Upper limit on disruption magnitude (days) uplimdirmag=15; 
Disruption magnitude seed dismagsee=100; 

Product 
inventory 

Initial product inventory level (kbbl) iniproinvlev=[200 200 200 200];  

Port / Storage Pumping rate (kbbl/hr) pumprate=75; 
VLCC allowable wait time before demurrage 
(days) 

VLCCalldem=1; 

VLCC allowable idle time in proportion to 
volume (>= 0) 

VLCCallvol=20; 

Reformer Reformer yield variation (%) refyievar=0.1; 
Cracker Cracker yield variation (%) crayievar=0.1; 
CDU CDU yield variation (%) CDUyievar=0.01; 

Waste yield for each product (0-1) wasyiepro=[0 0 0 0]; 
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APPENDIX 2: EXPORTING RESULTS FROM IRIS 

 

All the results from the original papers were replicated to ensure calibration of the model. The code 

used in the Matlab *.m in the file to run the model in Matlab R2013a considered a for loop in order 

to allow multiple runs to incorporate uncertainty. The construction was the following: 

 

EQUATION 6: ORIGINAL CODE FOR SIMPLE LOOP OF THE SIMULINK SIMULATIONS 
tic 
open_system('iris') 
for J = 1:1:1 
%Here the definition of the variables (Table 2): 
simOut=sim('iris','StopTime','120'); 
    if J==1 
        so = simOut.get('simouttest'); % “so”  is  the  variable  exported  by  
simouttest 
    else 
        A = simOut.get('simouttest'); 
        so=cat(1,so,A); 
    end 
end 
toc 

 

The base case configuration with a time horizon of 120 days in the computer used for this research 

(Intel Core i5-3320M CPU@2.60GHz with 8.00GB of installed RAM) takes and elapsed time to run of 

96.97 seconds. 

Total Profit results are exported to the Matlab Workspace using a block to export the results in 

Simulink. This block was added to the original Simulink model with the name simouttest (red circle 

in Figure 24): 
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FIGURE 24: MATLAB SIMULINK MODEL WITH SIMOUTTEST BLOCK TO EXPORT RESULTS TO WORKSPACE 
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APPENDIX 3: DEFINITION OF STOCHASTIC UNCERTAINTY 

The stochastic variability was incorporated through a factor of stochasticity as follows: 

𝑉𝑤𝑢 = 𝐹𝑢 ∙ 𝑉 
EQUATION 7: INCORPORATING UNCERTAINTY 

Where: 

 V: Deterministic (original) value of the variable 

 Vwu: Stochastic variable 

 Fu: Factor of uncertainty. This factor	  is	  defined	  as	  a	  normal	  distribution	  with	  µ=1	  and	  σ=0.2	  

(Figure 25) 

  

 
FIGURE 25: NORMAL DISTRIBUTION PLOT FOR µ=1 AND σ=0.2	  ( WOLFRAM ALPHA LLC, 2013) 

This factor is incorporated in some of the variables of the model as described in Table 3, and the 

stochastic simulation was coded using a parallel computing loop (parfor loop in Matlab) as 

described in Appendix 4: Improving the Computational Performance through Parallel computation. 

TABLE 3: DEFINITION OF UNCERTAINTIES IN THE *.M FILE 
Subsystem Variable Definition in m.file 

Control Panel Crude tank volume (kbbl) crutanvol= min(max(0,normrnd(1,0.2))*250,250);5 
Refinery 
Economics 

Product price variation percentage (%) proprivarper= max(0,normrnd(1,0.2))*1; 
Operating cost (K$/kbbl) opcost= max(0,normrnd(1,0.2))*2; 
Product or crude inventory cost (K$/kbbl) procruinvcost= max(0,normrnd(1,0.2))*0.05; 

Sales Magnitude of demand increase magdeminc= max(0,normrnd(1,0.2))*2; 
Demand variance percentage (%) demvarper= max(0,normrnd(1,0.2))*25; 

Suppliers Crude amount variation percentage (%) cruamovarper= max(0,normrnd(1,0.2))*5; 
Crude price variation percentage (%) cruprivarper= max(0,normrnd(1,0.2))*1; 
Disruption occurrence seed disoccsee= round(max(0,normrnd(1,0.2))*78);6 
Disruption magnitude seed dismagsee= round(max(0,normrnd(1,0.2))*100); 

Port / Storage Pumping rate (kbbl/hr) pumprate= max(0,normrnd(1,0.2))*75; 
Reformer Reformer yield variation (%) refyievar= max(0,normrnd(1,0.2))*0.1; 
Cracker Cracker yield variation (%) crayievar= max(0,normrnd(1,0.2))*0.1; 
CDU CDU yield variation (%) CDUyievar= max(0,normrnd(1,0.2))*0.01; 

                                                             
5 The maximum crude tank volume capacity is limited by the physical capacity of the tank. The uncertainty 
can be due to structural problems, operational considerations, among many others. The value is also non 
negative. 
6 The round() function is implemented because the model expects integers in that variable. 
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APPENDIX 4: IMPROVING THE COMPUTATIONAL PERFORMANCE THROUGH 
PARALLEL COMPUTATION  

The code to run the plug & play model (IRIS) was original implemented in Matlab in a *.m file as 

described in Equation 8. The variables for the Simulink simulation were defined in a different way -

using set_param()- than the code described in Equation 6. This is to consider the flexibility to move 

further to parallel computation if required (The MathWorks, Inc, 2013): 

 

EQUATION 8: REGULAR FOR LOOP IMPLEMENTED WITH SET_PARAM() FUNCTION 
%Regular loop: 
tic; 
output = cell(1,iterations); 
load_system('iris') %Load system without viewing 
  
for i = 1:1:iterations 
     
    %DEFINING VARIABLES: 
    %CONTROL PANEL 
    set_param('iris/Control 
Panel','tankvolume',num2str(min(max(0,normrnd(1,0.2))*250,250))); 
    %REFINERY ECONOMICS: 
    set_param('iris/Refinery 
Economics','pdtpricevariationpercent',num2str(max(0,normrnd(1,0.2))*1),'opcos
t',num2str(max(0,normrnd(1,0.2))*2),'invcost',num2str(max(0,normrnd(1,0.2))*0
.05)); 
    %SALES: 
set_param('iris/Sales','magnitudeofdemandincrease',num2str(max(0,normrnd(1,0.
2))*2),'demandvariance',num2str(max(0,normrnd(1,0.2))*25)); 
    %SUPPLIERS: 
set_param('iris/Suppliers','crudeamountvariationpercent',num2str(max(0,normrn
d(1,0.2))*5),'crudepricevariationpercent',num2str(max(0,normrnd(1,0.2))*1),'s
upplierseed',num2str(round(max(0,normrnd(1,0.2))*78)),'magnitudeseed',num2str
(round(max(0,normrnd(1,0.2))*100))); 
    %PORT/STORAGE 
set_param('iris/PortStorage','pumprate',num2str(max(0,normrnd(1,0.2))*75)); 
    %REFORMER 
set_param('iris/Reformer','variationpercentage',num2str(max(0,normrnd(1,0.2))
*0.1)); 
    %CRACKER 
set_param('iris/Cracker','percentagevariation',num2str(max(0,normrnd(1,0.2))*
0.1)); 
    %CDU 
set_param('iris/CDU','percentagevariation',num2str(max(0,normrnd(1,0.2))*0.01
)); 
  
    simOut=sim('iris','StopTime','60'); 
    output{i}=simOut.get('simouttest'); 
    i 
  
end 
trunr=toc 



75 
 

finaloutputr=squeeze(cell2mat(output)).'; 

 

The original computation with 1,000 iterations using the code of Equation 8 had a performance of 

30,273.8 seconds of computation time. In order to improve this performance the code was 

rewritten to take advantage of the Parallel Computation capabilities available in Matlab R2013a. 

This was implemented simply changing the regular for loop for a parfor loop, which is a relatively 

straightforward change. The code developed for the parallel computation is described in Equation 

9. Two relevant changes in this code compared with the one described in Equation 8 are that the 

Simulink model has to be loaded inside the parfor loop, and the variables have to be defined using 

the function set_param() in order to allow the system to distribute the Simulink simulations to 

parallel cores.  

 

EQUATION 9: MATLAB CODE FOR PARALLEL COMPUTATION 
%Parallel computation of the loop: 
matlabpool 
tic; 
outputpc = cell(1,iterations); 
 
parfor J = 1:1:iterations 
    load_system('iris') %Load system without viewing 
    
    %DEFINING VARIABLES: 
    %CONTROL PANEL 
    set_param('iris/Control 
Panel','tankvolume',num2str(min(max(0,normrnd(1,0.2))*250,250))); 
    %REFINERY ECONOMICS: 
    set_param('iris/Refinery 
Economics','pdtpricevariationpercent',num2str(max(0,normrnd(1,0.2))*1),'opcos
t',num2str(max(0,normrnd(1,0.2))*2),'invcost',num2str(max(0,normrnd(1,0.2))*0
.05)); 
    %SALES: 
set_param('iris/Sales','magnitudeofdemandincrease',num2str(max(0,normrnd(1,0.
2))*2),'demandvariance',num2str(max(0,normrnd(1,0.2))*25)); 
    %SUPPLIERS: 
set_param('iris/Suppliers','crudeamountvariationpercent',num2str(max(0,normrn
d(1,0.2))*5),'crudepricevariationpercent',num2str(max(0,normrnd(1,0.2))*1),'s
upplierseed',num2str(round(max(0,normrnd(1,0.2))*78)),'magnitudeseed',num2str
(round(max(0,normrnd(1,0.2))*100))); 
    %PORT/STORAGE 
set_param('iris/PortStorage','pumprate',num2str(max(0,normrnd(1,0.2))*75)); 
    %REFORMER 
set_param('iris/Reformer','variationpercentage',num2str(max(0,normrnd(1,0.2))
*0.1)); 
    %CRACKER 
set_param('iris/Cracker','percentagevariation',num2str(max(0,normrnd(1,0.2))*
0.1)); 
    %CDU 
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set_param('iris/CDU','percentagevariation',num2str(max(0,normrnd(1,0.2))*0.01
)); 

 
    simOut=sim('iris','StopTime','60'); 
    outputpc{J}=simOut.get('simouttest'); 
    J 

 
end 
  
trunpc=toc 
matlabpool close 
finaloutputpc=squeeze(cell2mat(outputpc)).'; 

 

The simulations were computed using an Intel Core i5-3320M CPU@2.60GHz with 8.00GB of 

installed RAM with 2 cores. The performance improvement of the parfor loop using the 2 available 

cores in the computer of this research produced a significant difference in performance for 1,000 

iterations. The results are shown in Table 4. 

 

TABLE 4: Comparison of Performance of Regular For Loop (EQUATION 8) And Parfor Loop (EQUATION 9) 
for 1,000 Iterations 

Regular loop Parfor loop Units 

30273.8 10663.9 Seconds 
504.6 177.7 Minutes 

8.4 3.0 Hours 
 

In order to ensure that both the regular loop and the parallel loop (parfor) were producing results 

that are not statistically different, the histogram of both distributions were compared (Figure 26) 
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FIGURE 26: HISTOGRAMS OF BOTH SIMULATIONS (REGULAR FORLOOP AND PARFOR LOOP) 

 

Also, the variance of both results is compared using the statistical software Minitab 16, and the 

conclusion is that they are not statistically different according to the following analysis of variance 

(ANOVA): 

 

One-way ANOVA: t(60) versus run  
 
Source    DF        SS    MS     F      P 
run        1       0.1   0.1  0.00  0.969 
Error   1998  112144.8  56.1 
Total   1999  112144.9 
 
S = 7.492   R-Sq = 0.00%   R-Sq(adj) = 0.00% 
 
 
                              Individual 95% CIs For Mean Based on 
                              Pooled StDev 
Level       N    Mean  StDev  --------+---------+---------+---------+- 
forloop  1000  51.756  7.562  (-----------------*------------------) 
parfor   1000  51.769  7.421  (------------------*-----------------) 
                              --------+---------+---------+---------+- 
                                   51.50     51.75     52.00     52.25 
 
Pooled StDev = 7.492 

 

Finally, also using Minitab 16, the sample of results produced by the regular for loop and the sample 

produced by the parallel loop, were compared with the following two sample t-test, concluding that 

they	  are	  not	  statistically	  different	  (pvalue>α	  cannot	  reject	  null	  hypothesis): 
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Two-Sample T-Test and CI: t(60), run  
 
Two-sample T for t(60) 
 
run         N   Mean  StDev  SE Mean 
forloop  1000  51.76   7.56     0.24 
parfor   1000  51.77   7.42     0.23 
 
 
Difference = mu (forloop) - mu (parfor) 
Estimate for difference:  -0.013 
95% CI for difference:  (-0.670, 0.644) 
T-Test of difference = 0 (vs not =): T-Value = -0.04  P-Value = 0.969  DF = 
     1998 
Both use Pooled StDev = 7.4919 

 

  
A box-plot (Figure 27) allows to graphically observe that both results are statistically not different. 
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FIGURE 27: BOX PLOT OF BOTH REGULAR FOR LOOP AND PARALLEL LOOP 
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APPENDIX 5: VALIDATION OF THE NUMBER OF ITERATIONS FOR THE 
STOCHASTIC SIMULATION 

 

One of the decisions of modeling the stochastic simulation is to define the appropriate number of 

iterations to minimize error and achieve a certain level of confidence. This is challenging in the case 

of the model represented by IRIS because the real population	  is	  unknown,	  and	  therefore	  µ	  and	  σ	  are	  

unknown. This means that it is not possible to compare the result of the sample given by the 

simulation with a referential patron.   

 

A workaround of this problem is to choose a certain sample size and compare that with a bigger 

sample size, ideally one order of magnitude bigger than the first one. If both samples produce 

results that are not statistically different, then the smaller on can be considered representative 

enough.  

 

In this case, the number of iterations selected is 1,000. This is the sample size used in the chapter 

“Stochastic Simulations”.	  The	  configuration	  of	  the	  simulation	  used	  to	  define	  the	  number	  of	  

iterations is the configuration presented in Case 2: standard uncertainty. The second stochastic 

simulation considered 10,000 iterations. The code to run the simulations is the same one shown in 

Equation 9. 

 

The simulation with 10,000 iterations ran for 108,524.2 seconds running in parallel the 2 cores of 

the Intel Core i5-3320M CPU@2.60GHz with 8.00GB of installed RAM. It produced the following 

results: 
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FIGURE 28: GRAPHICAL AND STATISTICAL SUMMARY FOR TOTAL PROFIT AFTER DAY 60 WITH 10,000 
ITERATIONS 

 

In order to compare both samples (10,000 iterations -Figure 28- and 1,000 iterations -Figure 17-) it 

valuable to compare their variances. This is possible through an analysis of variance (ANOVA) using 

Minitab 16: 

 

One-way ANOVA: t(60)10,000, t(60)_parfor  
 
Source     DF        SS    MS     F      P 
Factor      1       1.2   1.2  0.02  0.883 
Error   10998  603826.3  54.9 
Total   10999  603827.5 
 
S = 7.410   R-Sq = 0.00%   R-Sq(adj) = 0.00% 
 
 
                                    Individual 95% CIs For Mean Based on 
                                    Pooled StDev 
Level             N    Mean  StDev  --------+---------+---------+---------+- 
t(60)10,000   10000  51.805  7.409                (-----*-----) 
t(60)_parfor   1000  51.769  7.421  (------------------*-----------------) 
                                    --------+---------+---------+---------+- 
                                         51.50     51.75     52.00     52.25 
 
Pooled StDev = 7.410 
 
 
Grouping Information Using Tukey Method 
 
                  N    Mean  Grouping 
t(60)10,000   10000  51.805  A 



81 
 

t(60)_parfor   1000  51.769  A 
 
Means that do not share a letter are significantly different. 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons 
 
Individual confidence level = 95.00% 
 
 
t(60)10,000 subtracted from: 
 
               Lower  Center  Upper  ---------+---------+---------+---------+ 
t(60)_parfor  -0.518  -0.036  0.446      (-------------*-------------) 
                                     ---------+---------+---------+---------+ 
                                           -0.35      0.00      0.35      0.70 
 
 
Grouping Information Using Fisher Method 
 
                  N    Mean  Grouping 
t(60)10,000   10000  51.805  A 
t(60)_parfor   1000  51.769  A 
 
Means that do not share a letter are significantly different. 
 
 
Fisher 95% Individual Confidence Intervals 
All Pairwise Comparisons 
 
Simultaneous confidence level = 95.00% 
 
 
t(60)10,000 subtracted from: 
 
               Lower  Center  Upper  ---------+---------+---------+---------+ 
t(60)_parfor  -0.518  -0.036  0.446      (-------------*-------------) 
                                     ---------+---------+---------+---------+ 
                                           -0.35      0.00      0.35      0.70 

 

The conclusion from Tukey method and Fisher method (provided by Minitab 16) is that the 

variances from both samples are not significantly different. The analysis of variances shows a 

pvalue	  that	  is	  bigger	  than	  the	  defined	  α	  (0.05)	  therefore	  both	  variances	  cannot	  be	  considered	  

different. Now that is established that both simulations produced variances that are not statistically 

different, it is possible to conduct the comparison using t-test.  

 

Two-Sample T-Test and CI: t(60)_parfor, t(60)10,000  
 
Two-sample T for t(60)_parfor vs t(60)10,000 
 
                  N   Mean  StDev  SE Mean 
t(60)_parfor   1000  51.77   7.42     0.23 
t(60)10,000   10000  51.81   7.41    0.074 
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Difference = mu (t(60)_parfor) - mu (t(60)10,000) 
Estimate for difference:  -0.036 
95% CI for difference:  (-0.518, 0.446) 
T-Test of difference = 0 (vs not =): T-Value = -0.15  P-Value = 0.883  DF = 
     10998 
Both use Pooled StDev = 7.4097 
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FIGURE 29: BOX PLOTS FOR 1,000 AND 10,000 ITERATIONS 

 

Since the comparison from the t-test	  has	  a	  pvalue	  that	  is	  bigger	  than	  the	  defined	  α	  (0.05)	  it	  is	  

possible to conclude that the null hypothesis that both samples are equal cannot be rejected, and 

therefore they cannot be considered statistically different. 
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APPENDIX 6: DEFINING AND SIMULATING SPECIFIC VARIABILITY  

 

Crude price variation: The variation of this variable was defined using a sample of information from 

the New York Mercantile Exchange (NYMEX). The original link is:  

 

http://www.eia.gov/dnav/pet/pet_pri_fut_s1_d.htm. 

 

From that link, the crude oil from Contract 1 was obtained from the following link:  

 

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RCLC1&f=D 

 

The	  sheet	  “Data	  1”	  from	  that	  table	  gives	  the	  prices	  from	  different	  products.	  For	  this	  research,	  

Cushing, OK Crude Oil Future Contract 4 (Dollars per Barrel) was used to calculate the standard 

deviation as a percentage (3.8%). 

 

TABLE 5: CRUDE PRICE VARIATION SAMPLE 

# Date 
Cushing, OK Crude Oil Future Contract 4 (Dollars per 
Barrel) 

1 May 03, 2013 95.43 
2 May 06, 2013 96.11 
3 May 07, 2013 95.59 
4 May 08, 2013 96.47 
5 May 09, 2013 96.41 
6 May 10, 2013 96.03 
7 May 13, 2013 95.2 
8 May 14, 2013 94.37 
9 May 15, 2013 94.49 

10 May 16, 2013 95.42 
11 May 17, 2013 96.25 
12 May 20, 2013 96.85 
13 May 21, 2013 96.17 
14 May 22, 2013 94.06 
15 May 23, 2013 94 
16 May 24, 2013 93.98 
17 May 28, 2013 94.88 
18 May 29, 2013 93.15 
19 May 30, 2013 93.57 
20 May 31, 2013 92.12 
21 Jun 03, 2013 93.55 
22 Jun 04, 2013 93.51 
23 Jun 05, 2013 93.86 
24 Jun 06, 2013 94.8 
25 Jun 07, 2013 96.05 
26 Jun 10, 2013 95.84 
27 Jun 11, 2013 95.4 

http://www.eia.gov/dnav/pet/pet_pri_fut_s1_d.htm
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RCLC1&f=D
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28 Jun 12, 2013 95.85 
29 Jun 13, 2013 96.66 
30 Jun 14, 2013 97.82 
31 Jun 17, 2013 97.87 
32 Jun 18, 2013 98.43 
33 Jun 19, 2013 98.31 
34 Jun 20, 2013 94.84 
35 Jun 21, 2013 92.74 
36 Jun 24, 2013 93.91 
37 Jun 25, 2013 94.04 
38 Jun 26, 2013 94.22 
39 Jun 27, 2013 95.61 
40 Jun 28, 2013 95.1 
41 Jul 01, 2013 96.23 
42 Jul 02, 2013 97.41 
43 Jul 03, 2013 98.97 
44 Jul 05, 2013 100.45 
45 Jul 08, 2013 100.55 
46 Jul 09, 2013 100.8 
47 Jul 10, 2013 102.29 
48 Jul 11, 2013 101.59 
49 Jul 12, 2013 102.66 
50 Jul 15, 2013 102.99 
51 Jul 16, 2013 102.95 
52 Jul 17, 2013 103.58 
53 Jul 18, 2013 104.62 
54 Jul 19, 2013 104.35 
55 Jul 22, 2013 103.92 
56 Jul 23, 2013 102.64 
57 Jul 24, 2013 101.26 
58 Jul 25, 2013 101.78 
59 Jul 26, 2013 101.42 
60 Jul 29, 2013 101.41 
61 Jul 30, 2013 100.49 
62 Jul 31, 2013 101.65 
63 Aug 01, 2013 103.71 
64 Aug 02, 2013 103.23 
65 Aug 05, 2013 103.08 
66 Aug 06, 2013 102.11 
67 Aug 07, 2013 101.49 
68 Aug 08, 2013 100.53 
69 Aug 09, 2013 102.38 
70 Aug 12, 2013 102.97 
71 Aug 13, 2013 103.78 
72 Aug 14, 2013 103.97 
73 Aug 15, 2013 104.64 
74 Aug 16, 2013 105.17 
75 Aug 19, 2013 104.73 
76 Aug 20, 2013 103.59 
77 Aug 21, 2013 101.25 
78 Aug 22, 2013 101.96 
79 Aug 23, 2013 103.11 
80 Aug 26, 2013 102.78 
81 Aug 27, 2013 105.37 
82 Aug 28, 2013 106.18 
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83 Aug 29, 2013 104.95 
84 Aug 30, 2013 104.17 
85 Sep 03, 2013 104.83 
86 Sep 04, 2013 103.92 
87 Sep 05, 2013 104.79 
88 Sep 06, 2013 106.24 
89 Sep 09, 2013 105.15 
90 Sep 10, 2013 103.35 
91 Sep 11, 2013 103.54 
92 Sep 12, 2013 104.54 
93 Sep 13, 2013 104.37 
94 Sep 16, 2013 103.35 
95 Sep 17, 2013 101.99 
96 Sep 18, 2013 104.43 
97 Sep 19, 2013 103.11 
98 Sep 20, 2013 102.49 
99 Sep 23, 2013 100.52 

100 Sep 24, 2013 100.41 
101 Sep 25, 2013 100.13 
102 Sep 26, 2013 100.75 
103 Sep 27, 2013 100.46 
104 Sep 30, 2013 100.16 
105 Oct 01, 2013 100.03 
106 Oct 02, 2013 101.7 
107 Oct 03, 2013 101.25 
108 Oct 04, 2013 101.85 
109 Oct 07, 2013 101.56 
110 Oct 08, 2013 102.04 
111 Oct 09, 2013 100.32 
112 Oct 10, 2013 101.91 
113 Oct 11, 2013 101.45 
114 Oct 14, 2013 101.78 
115 Oct 15, 2013 100.86 
116 Oct 16, 2013 101.9 
117 Oct 17, 2013 100.12 
118 Oct 18, 2013 100.54 
119 Oct 21, 2013 99.49 
120 Oct 22, 2013 98.31 

 

In order to simulate the effect of this specific variability, the Case 0: Original setting without 

uncertainty (no variation %) was considered only modifying the Refinery Economics subsystem 

and implemented in parallel as described in Equation 9: Matlab code for parallel computation. This 

is possible because IRIS defines these variable as Constant Sample Time, specifying a constant (Inf) 

sample	  time,	  which	  in	  Matlab	  means	  that	  “the block	  executes	  only	  once	  during	  model	  initialization” 

(The MathWorks, Inc, 2013). The base code was the one defined for Case 0 (no variation %), only 

modifying specifically the lines related to the Refinery Economics subsystem of IRIS: 
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Code modification for Case 1a: 

%REFINERY ECONOMICS: 
set_param('iris/Refinery Economics', 'pdtpricevariationpercent', 
num2str(max(0,normrnd(1,0.2))*3.8), 'opcost', 
num2str(max(0,normrnd(1,0.2))*2), 'invcost', 
num2str(max(0,normrnd(1,0.2))*0.05)); 

 

Code modification for Case 1b: 

 

%SALES: 
set_param('iris/Sales', 'magnitudeofdemandincrease', 
num2str(max(0,normrnd(1,0.2))*2), 'demandvariance', 
num2str(max(0,normrnd(1,0.2))*25)); 
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APPENDIX 7: COMPARISON BETWEEN RESULTS OF CASE 1A AND CASE 1B 

 

The comparison presented in Case 1: Focalized Uncertainty can be also observed in a box plot 

representation. When adding to the comparison the referential Case 0 (no variation %), it is visually 

clear that the Case 1a has worse expected performance than Case 1b, even when Case 1b has a 

lower minimum value (or more risk). This is an important difference that means that Case 1a is 

worse expected performance (in total profit after 120 days) but less risk and Case 1b is better 

expected performance but more risk. 

 

 
FIGURE 30: BOXPLOTS OF TOTAL PROFIT FOR CASE 1A AND CASE 1B 

 

The variances of these two cases are also significantly different. An Analysis of Variance performed 

using the statistical software Minitab 16 using both Tukey method and Fisher method illustrates 

this conclusion: 

 

One-way ANOVA: t(120)_Case1a, t(120)_Case1b  
 
Source    DF      SS     MS       F      P 
Factor     1   19270  19270  137.36  0.000 
Error   1998  280293    140 
Total   1999  299562 
S = 11.84   R-Sq = 6.43%   R-Sq(adj) = 6.39% 
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                                   Individual 95% CIs For Mean Based on 
                                   Pooled StDev 
Level             N   Mean  StDev  -----+---------+---------+---------+---- 
t(120)_Case1a  1000  55.76   8.42  (---*--) 
t(120)_Case1b  1000  61.97  14.48                                 (---*---) 
                                   -----+---------+---------+---------+---- 
                                     56.0      58.0      60.0      62.0 
 
Pooled StDev = 11.84 
 
Grouping Information Using Tukey Method 
 
                  N   Mean  Grouping 
t(120)_Case1b  1000  61.97  A 
t(120)_Case1a  1000  55.76  B 
 
Means that do not share a letter are significantly different. 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons 
 
Individual confidence level = 95.00% 
 
 
t(120)_Case1a subtracted from: 
 
               Lower  Center  Upper  ----+---------+---------+---------+----- 
t(120)_Case1b   5.17    6.21   7.25                           (---*---) 
                                     ----+---------+---------+---------+----- 
                                       0.0       2.5       5.0       7.5 
 
Grouping Information Using Fisher Method 
 
                  N   Mean  Grouping 
t(120)_Case1b  1000  61.97  A 
t(120)_Case1a  1000  55.76  B 
 
Means that do not share a letter are significantly different. 
 
Fisher 95% Individual Confidence Intervals 
All Pairwise Comparisons 
 
Simultaneous confidence level = 95.01% 
 
 
t(120)_Case1a subtracted from: 
 
               Lower  Center  Upper  ----+---------+---------+---------+----- 
t(120)_Case1b   5.17    6.21   7.25                           (---*---) 
                                     ----+---------+---------+---------+----- 
                                       0.0       2.5       5.0       7.5 

 
  

Also, and now that is known that the variances are significantly different, a two sample test can be 

performed. This test, also conducted using Minitab 16, helps to conclude that both cases 1a and 1b 

are	  significantly	  different	  (pvalue<α). 
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Two-Sample T-Test and CI: t(120)_Case1a, t(120)_Case1b  
 
Two-sample T for t(120)_Case1a vs t(120)_Case1b 
 
                  N   Mean  StDev  SE Mean 
t(120)_Case1a  1000  55.76   8.42     0.27 
t(120)_Case1b  1000   62.0   14.5     0.46 
 
Difference = mu (t(120)_Case1a) - mu (t(120)_Case1b) 
Estimate for difference:  -6.208 
95% CI for difference:  (-7.247, -5.169) 
T-Test of difference = 0 (vs not =): T-Value = -11.72  P-Value = 0.000  DF = 
     1605 
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APPENDIX 8: UNCERTAINTY VERSUS SENSITIVITY 

In order to identify the specific effect that the variation of each of the 14 variables defined in Table 

3 for the stochastic simulation, 14 simulations were conducted incorporating uncertainty one 

variable at a time. This simulation of 14 configurations took 296,419.3 seconds (82 hours) running 

with a parallel computation in the computer of this research.  The variables with a significant 

correlation between their uncertainty and the Total Profit were compared in a marginal plot as 

follows: 

Using the statistical software Minitab 16 the Pearson correlation values and the p-values were 

calculated for each of the 14 variable stochastic variations and the final result (Total Profit): 

Correlations: a: Tank Volume, Ra: Total Profit varying Tank Volume   
 
Pearson correlation of a and Ra = -1.000 
P-Value = 0.000 
 
  

Correlations: b: Product price variation percentage (%), Rb: Total Profit varying Product 
price variation percentage (%) 
 
Pearson correlation of b and Rb = -1.000 
P-Value = 0.000 
 
  

Correlations: c: Operating cost (K$/kbbl), Rc: Total Profit varying Operating cost 
(K$/kbbl)  
 
Pearson correlation of c and Rc = -1.000 
P-Value = 0.000 
 
  

Correlations: d: Product or crude inventory cost (K$/kbbl), Rd: Total Profit varying 
Product or crude inventory cost (K$/kbbl)  
 
Pearson correlation of d and Rd = -1.000 
P-Value = 0.000 
 
  

Correlations: e: Magnitude of demand increase, Re: Total Profit varying Magnitude of 
demand increase  
 
Pearson correlation of e and Re = 0.003 
P-Value = 0.916 
 
  

Correlations: f: Demand variance percentage (%), Rf: Total Profit varying Demand 
variance percentage (%)  
 
Pearson correlation of f and Rf = -0.996 
P-Value = 0.000 
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Correlations: g: Crude amount variation percentage (%), Rg: Total Profits varying Crude 
amount variation percentage (%) 
 
Pearson correlation of g and Rg = 1.000 
P-Value = 0.000 
 
  

Correlations: h: Crude price variation percentage (%), Rh: Total Profit varying Crude 
price variation percentage (%) 
 
Pearson correlation of h and Rh = -0.017 
P-Value = 0.592 
 
  

Correlations: k: Disruption occurrence seed, Rk: Total Profit varying Disruption 
occurrence seed 
 
Pearson correlation of k and Rk = -0.007 
P-Value = 0.834 
 
  

Correlations: l: Disruption magnitude seed, Rl: Total Profit varying Disruption magnitude 
seed 
 
Pearson correlation of l and Rl = 0.107 
P-Value = 0.001 
 
  

Correlations: m: Pumping rate (kbbl/hr), Rm: Total Profit varying Pumping rate (kbbl/hr) 
 
Pearson correlation of m and Rm = -0.715 
P-Value = 0.000 
 
  

Correlations: n: Reformer yield variation (%), Rn: Total Profit varying Reformer yield 
variation (%) 
 
Pearson correlation of n and Rn = -0.032 
P-Value = 0.308 
 
  

Correlations: o: Cracker yield variation (%), Ro: Total Profit varying Cracker yield 
variation (%) 
 
Pearson correlation of o and Ro = -0.020 
P-Value = 0.534 
 
  

Correlations: p: CDU yield variation (%), Rp: Total Profit varying CDU yield variation (%)  
 
Pearson correlation of p and Rp = 0.020 
P-Value = 0.528 
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Only the variations of the following variables were considered significant for the final result of the 

dynamic simulation (Total Profit): 

 Tank Volume (kbbl): Pearson correlation of a and Ra = -1.000, P-Value = 0.000 

 Product price variation percentage: Pearson correlation of b and Rb = -1.000, P-Value = 

0.000 

 Operating cost (K$/kbbl): Pearson correlation of c and Rc = -1.000, P-Value = 0.000 

 Product or crude inventory cost (K$/kbbl): Pearson correlation of d and Rd = -1.000, P-

Value = 0.000 

 Crude amount variation percentage (%): Pearson correlation of g and Rg = 1.000, P-Value = 

0.000 

 Demand variance percentage (%): Pearson correlation of f and Rf = -0.996, P-Value = 0.000 

 Pumping rate (kbbl/hr): Pearson correlation of m and Rm = -0.715, P-Value = 0.000 

 

The relationship between the uncertainty and the total profit result of the system after 120days is 

illustrated in the following graphs: 
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FIGURE 31: TANK VOLUME UNCERTAINTY VERSUS TOTAL PROFITS 
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FIGURE 32: PRODUCT PRICE VARIATION % VERSUS TOTAL PROFITS 
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FIGURE 33: OPERATING COST VERSUS TOTAL PROFITS 
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FIGURE 34: PRODUCT OR CRUDE INVENTORY COST VERSUS TOTAL PROFITS 
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FIGURE 35: TOTAL PROFIT VS DEMAND VARIANCE % 

 



95 
 

8765432

63

62

61

60

Crude amount variation percentage (%)

To
ta

l P
ro

fit
 (

m
ill

io
n 

$)

Marginal Plot of Total Profit vs Crude amount variation percentage

 

FIGURE 36: TOTAL PROFIT VS CRUDE AMOUNT VARIATION % 
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FIGURE 37: TOTAL PROFIT VS PUMPING RATE 
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APPENDIX 9: THE DYNAMICS OF NOT ACHIEVING DEMAND 

Iris is a dynamic model and therefore it is impacted by the dominance of internal feedback loops. One 

example of these dominances is the effect produced by the fact that the original configuration (base 

case  from  original  paper)  doesn’t  have enough capacity to achieve the demand. The problem with not 

achieving demand is that in IRIS, this is heavily penalized.  

 

To test this concept, the configuration without uncertainty (Case 0) was run for 240 days. The crude 

inventory is observable in Figure 38: 

 

 
FIGURE 38: CRUDE INVENTORY OVER 240 DAYS  

 

The plant quickly focuses on achieving the demand of two crudes (red and blue in Figure 39) 

 
FIGURE 39: PRODUCT INVENTORY PROFILE FOR 240 DAYS 
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The customer satisfaction of the two products that are not supplied as demanded drops drastically (first 

two graphs in Figure 40. 

 
FIGURE 40: CUSTOMER SATISFACTION FOR CASE 0 OVER 240 DAYS 

 

The loop of revenue produces a constant revenue over the whole period of the simulation: 

 
FIGURE 41: REVENUE FOR CASE 0 OVER 240 DAYS  
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The problem is that the penalty for not achieving the demand of two products grows exponentially: 

 
FIGURE 42: PENALTY FOR NOT ACHIEVING DEMAND  

 

This exponential behavior produces a change in dominance of the feedback loops, moving the cash flow 

to negative around day 140: 

 

 
FIGURE 43: TOTAL PROFIT FOR CASE 0 OVER 240 DAYS 
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APPENDIX 10: CONFIGURING IRIS FOR STEADY INCREMENT OF TOTAL PROFITS 

 

The original configuration of IRIS (Appendix 1: IRIS settings and results from original paper) 

considers several complex feedback loops and structures that produce non-linear behaviors like the 

one observed by the goal-seeking behavior of Total Profits in Figure 10 for case 0. In order to 

explore the effects of reducing that complexity diminishing the relevance of feedback loops like the 

one that is penalizing the system for not delivering what is demanded, the configuration was 

modified.  

 

This modification considered a combination of aspects to diminish the effect of the negative 

feedback loop that is producing the goal-seeking behavior. The changes in the values of the settings 

were: 

 Demand switch off 

 Mean Product demand (kbbl/day) = [355 90 265 145]/7 

 Procurement policy choice: 2 

 Scheduling policy choice: 2 

 Crude storage capacity limit (kbbl) = [12500 12500 12500 12500 12500] 

 Maximum throughput (kbbl/day) = 400 

 

Once the model was reconfigured with these new settings, the code used to run the simulation was: 

EQUATION 10: CODE FOR SIMULATION WITH STEADY INCREMENT IN PROFITS  

%Parallel computation of the loop: 

matlabpool 

tic; 

iterations=1000; 

outputpc = cell(1,iterations); 

  

parfor J = 1:1:iterations 

    load_system('iris') %Load system without viewing 

    %DEFINING VARIABLES: 
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    %CONTROL PANEL 

    a=normrnd(1,0.2); 

     set_param('iris/Control Panel', 'tankvolume', 

num2str(min(max(0,a)*250,250)), 'maxthruput', 

num2str(max(0,normrnd(1,0.2))*400)); 

    %REFINERY ECONOMICS: 

set_param('iris/Refinery Economics', 'pdtpricevariationpercent', 

num2str(max(0,normrnd(1,0.2))*1), 'opcost', num2str(max(0,normrnd(1,0.2))*2),  

'invcost', num2str(max(0,normrnd(1,0.2))*0.05)); 

    %SALES: 

set_param('iris/Sales', 'magnitudeofdemandincrease', 

num2str(max(0,normrnd(1,0.2))*2), 'demandvariance', 

num2str(max(0,normrnd(1,0.2))*25)); 

    %SUPPLIERS: 

set_param('iris/Suppliers', 'crudeamountvariationpercent', 

num2str(max(0,normrnd(1,0.2))*5),'crudepricevariationpercent', 

num2str(max(0,normrnd(1,0.2))*1), 

'supplierseed',num2str(round(max(0,normrnd(1,0.2))*78)), 'magnitudeseed', 

num2str(round(max(0,normrnd(1,0.2))*100))); 

    %PORT/STORAGE 

set_param('iris/PortStorage', 'pumprate', 

num2str(max(0,normrnd(1,0.2))*75)); 

    %REFORMER 

set_param('iris/Reformer', 'variationpercentage', 

num2str(max(0,normrnd(1,0.2))*0.1)); 

    %CRACKER 

set_param('iris/Cracker', 'percentagevariation', 

num2str(max(0,normrnd(1,0.2))*0.1)); 

    %CDU 

set_param('iris/CDU', 'percentagevariation', 

num2str(max(0,normrnd(1,0.2))*0.01)); 

simOut=sim('iris','StopTime','480'); 

outputpc{J}=simOut.get('simouttest'); 

J 

end 

trunpc=toc 

matlabpool close 
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After developing the new configuration with a simplified behavior, the model was tested with 

deterministic inputs for 3,000 days of time horizon: 

 

FIGURE 44: TIME SERIES PLOT FOR DETERMINISTIC TEST 

 

The stochastic simulation of this configuration (Equation 10) gives the following behavior of the total 

profit over the 480 days of time horizon: 

 

FIGURE 45: TIME SERIES PLOT OF EXPECTED TOTAL PROFIT 
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Since the behavior of total profit is quite similar to a linear function, the result of the stochastic 

simulation  shouldn’t  be  different  from  the  result  of  the  deterministic  simulation.  This  is  confirmed  by  a  

graphical and statistical comparison: 

 

FIGURE 46: HISTOGRAM AND STATISTICS FOR TOTAL PROFIT (STEADY INCREMENT IN PROFIT)  

 

The null hypothesis of a one sample t-test to compare the deterministic case with the expected value 

from the stochastic simulation cannot be rejected, therefore there is not enough statistical significance 

to say that they are not different. 

 

One-Sample T: t(480)  
Test of mu = 486 vs not = 486 

 

Variable    N    Mean  StDev  SE Mean       95% CI          T      P 

t(480)    999  486.71  52.14     1.65  (483.47, 489.95)  0.43  0.667 

 

 

 

 

600525450375300225
million $

$486 million for Case 3 simulated with deterministic inputs

Median

Mean

495.0492.5490.0487.5485.0

1st Q uartile 461.25
Median 491.77
3rd Q uartile 520.51
Maximum 637.08

483.47 489.95

P-V alue < 0.005

Mean 486.71
StDev 52.14
N 999

Minimum 179.32

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% Confidence Intervals

Histogram and Statistics for Case 3



103 
 

Similarly to Figure 20, Figure 47 is showing a propagation of the standard deviation over the time 

horizon of the simulation.  

 

FIGURE 47: PROPAGATION OF THE STANDARD DEVIATION OVER TIME HORIZON 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 11: COMPLETE GRAPHS FOR SOME OF THE FIGURES 
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Complete time series plot of Figure 7: 
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FIGURE 48: TIME SERIES PLOT FOR BASE CASE 

Complete time series plot for Figure 10: 

 

FIGURE 49: TIME SERIES PLOT FOR BASE CASE AND CASE 0 

Complete time series plot for Figure 16: 

 

120.00108.0096.0084.0072.0060.0048.0036.0024.0012.000.01

120

100

80

60

40

20

Days (time steps of 0.01 days)

m
ill

io
n 

$

Original Paper
No Variation %

Variable

Time Series Plot of Original Paper, No Variation %



105 
 

 

 

FIGURE 50: COMPLETE COMPARISON OF CASE 1A AND CASE 1B 

 

All statistically significant variables for sensitivity analysis (Figure 21) 

 

FIGURE 51: SENSISTIVITY ANALYSIS WITH ALL STATISTICALLY SIGNIFICANT VARIABLES 
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Implication	  of	  the	  Jensen’s	  Inequality	  for	  System	  Dynamic	  Simulations:	  
Application to a Plug & Play Integrated Refinery Supply Chain Model 

 
EXECUTIVE SUMMARY 

 
By 

Juan Esteban Montero: Advanced Analytics, Chevron. 
& 

Richard de Neufville: MIT Professor of Engineering Systems and Civil and Environmental 
Engineering 

 
Extracted From Thesis Research Submitted to the MIT System Design and Management Program on 

February, 2014 in Partial Fulfillment of the Requirements for the Degree of Master of Science in 
Engineering and Management. This	  document	  is	  intended	  for	  Chevron’s	  internal	  distribution. 

 
ABSTRACT 
 
This research studies how critical is the effect of considering uncertainty to a dynamic model 
because	  of	  Jensen’s	  Inequality.  This is done using as an example the supply chain of a refinery, 
which illustrates that the difference between probable and expected results can be significant, 
arguing that the distributions and probabilities can be dramatically different from the expected-
planned value. Secondly, this research discusses that, from the perspective of the dynamics of the 
system, the mode of behavior can vary considerably as well, leading managers to dissimilar 
situations and contexts that will inevitably produce different decisions or strategies. 
 
 

INTRODUCTION 
 
Managers and decision makers often recur to models and analytics as tools to understand the real 
systems and define optimal decisions and goals. Very commonly these models are complex in 
almost any possible way, overwhelming the decision makers and making almost impossible to 
understand intuitively the behavior of the system and to verify that the results are actually the 
desired solution.  
 
In most cases, models and simulations cannot be tested to prove accuracy. This is the main reason 
why the mathematical and physical laws have to be considered from the very beginning to 
construct (or at least try to) good models. One of the mathematical concepts that has to be 
considered	  by	  managers	  and	  decision	  makers	  is	  the	  Jensen’s	  Inequality,	  which	  states	  that	  the	  
“average	  of	  all	  the	  possible	  outcomes	  associated	  with	  uncertain	  parameters,	  generally	  does	  not	  
equal the value obtained from using the average value of the parameters” (de Neufville, 2012). 
 
Systems Dynamics, and dynamic simulations are highly non-linear (Sterman, 2000) and therefore 
the	  effects	  of	  Jensen’s	  Inequality,	  must	  be	  considered	  as	  a	  cause	  of	  producing	  the	  wrong	  results. 
This research evaluates the expected value of the result of a dynamic simulation, but also the 
different modes of behavior produced by those dynamic simulations.  
 
The different effects of uncertainty can be relevant for the decision makers since they could 
certainly produce different behaviors due to different pressures and contextual factors. These 
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differences could represent dissimilar strategies, decisions, risk perception and other factors that 
are certainly significant from the point of view of any manager.  
 
The	  effects	  of	  Jensen’s	  inequality	  on	  the	  expected	  value	  of	  a	  model	  have	  been	  studied	  in	  the	  past.	  
The	  novelty	  of	  this	  research	  lays	  on	  the	  focus	  of	  the	  effects	  of	  Jensen’s	  Inequality	  on	  the	  mode	  of	  
behavior of a dynamic system. 
 
 

RESEARCH OBJECTIVES 
 
Dynamic systems are often simulated using deterministic inputs. These kinds of simulations are 
highly non-linear (Sterman, 2000) and	  therefore	  the	  effects	  of	  Jensen’s	  Inequality,	  must	  be	  
considered as a cause of producing the wrong results.  
 
Main hypothesis for the thesis research:  
 
Not considering uncertainty in the inputs of a dynamic simulation produces the wrong results. 
 
Research questions: 
 

 Does	  Jensen’s	  inequality	  alter	  the	  expected	  value	  of	  the	  result	  of	  a	  dynamic	  simulation? 
 Does it also produce different modes of behavior of a dynamic simulation? 
 Are the different results and mode of behaviors relevant for the decision makers? 

 
 

PLUG & PLAY MODEL 
INTRODUCTION TO THE PLUG&PLAY MODEL 

 
The plug & play model was taken from the research presented in 2008 in the Computers and 
Chemical	  Engineering	  Journal,	  volume	  32	  in	  the	  paper	  titled	  “Decision	  support	  for	  integrated	  
refinery supply	  chains	  Part	  1:	  Dynamic	  simulation”.	  The	  authors	  of	  this	  paper	  are	  Suresh	  S.	  Pitty,	  
Wenkai Li, Arief Adhitya, Rajagopalan Srinivasan and I.A. Karimi, at that time from the Department 
of Chemical and Biomolecular Engineering of the National University of Singapore and the Institute 
of Chemical and Engineering Sciences. 
 
  

RUNNING THE MODEL 
METHODOLOGY OVERVIEW 

 
In order to evaluate the hypothesis of this research the following steps are followed: 
 

7.  A pre-developed –plug & play model called IRIS is obtained, implemented and tested. This 
is	  explained	  in	  the	  chapter	  “Plug & Play Model”. 

8. The original configuration of the model is deterministic emulating uncertainty, in other 
words,	  it	  doesn’t	  rely on repeated random sampling to obtain numerical results, but 
incorporates a variation percentage and a variation seed that is fixed. In practice, this means 
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that if the model runs several times the numerical results are going to be the same (Suresh, 
et al., 2008).  

9. The original configuration is modified to eliminate the variation percentage. This is 
achieved by practically setting the variable to zero (0) and running the simulation again one 
more time. 

10. Uncertainty is incorporated in targeted ways. Different modules of the system are defined 
as uncertain with some realistic variation and the simulation is stochastically iterated 1,000 
times. 

11. Stochasticity is incorporated in fourteen of the variables in a standard way (a random value 
with normal distribution). The dynamic simulation is stochastically iterated 1,000 times. 

12. The distributions and mode o behaviors of the results of the simulations are compared 
statistically and graphically to analyze the effect of uncertainty on the dynamic simulation.  

 

CONCLUSIONS 

 
1. Considering stochastic variability can have a major effect on the performance of the system. 

Since the dynamic model used in this research (IRIS) is non-linear, this is an empirical case 
of	  Jensen’s	  Inequality.	  Specifically	  of	  Jensen’s	  inequality	  on	  a	  concave	  function,	  where	  the	  
expected result from the deterministic simulation was compared with the distribution of 
results from the stochastic simulation giving a graphical and statistically significant 
difference (E(f(x))<f(E(x))): 

 

 
FIGURE 52: HISTOGRAM AND STATISTICS FOR CASE 1A 

 
2. Even if the effect of uncertainty and non-linearity don’t	  impact	  the	  expected	  value of the 

model, it will produce a distribution of results and a mode of behavior that could be 
significantly relevant for the decision maker. The mode of behavior of the dynamic results 
can foster completely different human behaviors from the managers and decision makers, 
even if the final simulated result is statistically not different. In the figure below, the 
oscillation produced by incorporating stochastic variability produces a completely different 
mode of behavior.  
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FIGURE 53: COMPARISON BETWEEN BASE CASE AND CASE 0 USING TIME SERIES OF THE MOVING 

AVERAGES 

 
3. The effects of stochastic variation and complexity on the average, risk or mode of behavior 

can be non-related, which means that, for example, a case with better expected value could 
also produce a worse mode of behavior or risk.  

 
 

 
FIGURE 54: COMPARISON OF DISTRIBUTIONS FOR CASE1A AND CASE1B 

 
4. The dynamic simulation in the case of IRIS considered a defined and limited time horizon. 

The effect of the stochastic simulation	  (Jensen’s	  Inequality)	  seemed	  to	  be	  propagating	  over	  
the standard deviation, showing a steady increment over the time horizon of the simulation. 
The relevance of this insight is that, since the standard deviation is growing over the time 
horizon of the dynamic simulation, the interval of confidence for the expected value will 

120.00108.0096.0084.0072.0060.0048.0036.0024.0012.000.01

70

60

50

40

30

20

Days

m
ill

io
n 

$
Mov. Ave. Case No Variation %
Mov. Ave. Original Paper base case

Variable

Mode of behavior for moving average of total profit of original paper and case without uncertainty

9680644832160

200

150

100

50

0

million $ (total profit after 120 days)

Fr
eq

ue
nc

y

Case 1a
Case 1b

Case

Comparison of performances based on risk and total profit for Case 1a and Case 1b
Normal Distribution Fit



111 
 

also grow, which could eventually trick the decision maker to think that the model is 
producing a similar result, when in fact is just the model losing the precision to make a 
significant comparison. 
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FIGURE 55: PROPAGATION OF STANDARD DEVIATION 

 
5. A sensitivity analysis showed that stochastic variability is not important for every variable 

in the model. This is important since the decision maker should focus the efforts only on the 
variables that are relevant from the perspective of the sensitivity of the results of the 
system to their uncertainty. 

 

 
FIGURE 56: TORNADO CHART FOR SIGNIFICANT VARIABLES 

 

6. The stochastic simulation of a dynamic model like IRIS can produce contra-intuitive results 
due to dynamic complexity.Figure 36 represented a variable that increased total profits 
when it increased variability 
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Figure 57: Total profit vs Crude Amount Variation % 

 
 
 DISCUSSION 
 
In general, it is clear from the bibliographic research that there is a significant academic and 
industrial consensus on how importance and challenging is managing supply chains. The detailed 
and dynamic complexity are both present in any supply chain system, and they are especially 
present in an energy company due to their global reach and diversity and scale of products. Because 
of the mentioned reasons, dynamic simulations are highly non-linear (Sterman, 2000) and 
therefore	  the	  effects	  of	  Jensen’s	  Inequality,	  must	  be	  considered	  as	  a	  cause	  of	  producing	  the	  wrong	  
results. IRIS served as a practical and flexible platform for testing the different effects. It is expected 
to find similar, and even bigger, effects on more complex and realistic models. For this reason it is 
encouraged	  to	  research	  further	  the	  effects	  of	  Jensen’s	  Inequality	  with	  more	  models	  and	  more	  
specific applications. 
 
Discontinuity is a source of non-linearity and management can creates discontinuity. This happens 
because managers or system operators decide to take some major decision about a project creating 
change in the function or model of behavior (de Neufville, 2012). The decisions will depend on 
many aspects: culture of the organization, particular context, results from previous periods, 
external pressures, personal goals, etc. Particularly important are the current mode of behaviors of 
the system.  Different mode of behaviors will produce different managerial behaviors, for example, 
a declining metric of performance could produce different decisions than an increasing one. 
 
The context is analyzed, most of the times, using a short time horizon and a limited set of data. This 
could produce a biased perception of the process performance that will, most probably, impact the 
behavior. In addition, disruption and special events will certainly influence the perception of status 
of performance, driving different behaviors or changing the function of performance producing 
nonlinearity. The practical consequences on the results of a system are that the estimated result 
will be wrong, and that the management would produce a personal resistance to recognizing and 
dealing with uncertainty. This is augmented when managers deal with many client relationships 
and has to respond to expectations of certainty (de Neufville, 2012). 
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